An Ultra-Wide Swath Synthetic Aperture Radar Imaging System via Chaotic Frequency Modulation Signals and a Random Pulse Repetition Interval Variation Strategy

Ultra-wide swath synthetic aperture radar (SAR) systems are of great significance for applications such as terrain measurement and ocean monitoring. In conventional SAR systems, targets echo from the near-range and far-range of an observed swath mutually overlap, and the blind ranges are caused by t...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenjiao Chen, Jiwen Geng, Yufeng Guo, Li Zhang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/10/1719
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultra-wide swath synthetic aperture radar (SAR) systems are of great significance for applications such as terrain measurement and ocean monitoring. In conventional SAR systems, targets echo from the near-range and far-range of an observed swath mutually overlap, and the blind ranges are caused by those that the radar cannot receive while it is transmitting. Therefore, the swath of conventional SAR systems is limited due to their range ambiguity as well as the transmitted pulse blockage. With the development of waveform diversity, range ambiguity can be suppressed by radar waveform design with a low-range sidelobe without increasing the system’s complexity when compared to the scan-on-receive (SCORE) based on digital beamforming (DBF) technique. Additionally, by optimizing the pulse repetition interval (PRI) variation strategy, the negative impact of blind range on imaging can be reduced. Based on these technologies, this paper proposes a theoretical architecture to achieve an ultra-wide swath SAR imaging system via chaotic frequency modulation (FM) signals and a random pulse repetition interval variation strategy without increasing the antenna area. By transmitting time-variant chaotic-FM signals, the interference between targets in the near range and far range can be reduced by the corresponding match filters. Furthermore, random pulse repetition intervals increase the irregularity and aperiodicity of the blind ranges to further improve the imaging quality. Simulation results demonstrate that the proposed wide-swath SAR system has better performance compared to classical SAR systems.
ISSN:2072-4292