Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance

Abstract Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic...

Full description

Saved in:
Bibliographic Details
Main Authors: Gabrielle C. Ngwana-Joseph, Jody E. Phelan, Emilia Manko, Jamille G. Dombrowski, Simone da Silva Santos, Martha Suarez-Mutis, Gabriel Vélez-Tobón, Alberto Tobón Castaño, Ricardo Luiz Dantas Machado, Claudio R. F. Marinho, Debbie Nolder, François Nosten, Colin J. Sutherland, Susana Campino, Taane G. Clark
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54964-x
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841559385586794496
author Gabrielle C. Ngwana-Joseph
Jody E. Phelan
Emilia Manko
Jamille G. Dombrowski
Simone da Silva Santos
Martha Suarez-Mutis
Gabriel Vélez-Tobón
Alberto Tobón Castaño
Ricardo Luiz Dantas Machado
Claudio R. F. Marinho
Debbie Nolder
François Nosten
Colin J. Sutherland
Susana Campino
Taane G. Clark
author_facet Gabrielle C. Ngwana-Joseph
Jody E. Phelan
Emilia Manko
Jamille G. Dombrowski
Simone da Silva Santos
Martha Suarez-Mutis
Gabriel Vélez-Tobón
Alberto Tobón Castaño
Ricardo Luiz Dantas Machado
Claudio R. F. Marinho
Debbie Nolder
François Nosten
Colin J. Sutherland
Susana Campino
Taane G. Clark
author_sort Gabrielle C. Ngwana-Joseph
collection DOAJ
description Abstract Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P. vivax isolates across 29 endemic countries, detailing population structure, patterns of relatedness, selection, and resistance profiling, providing insights into potential drivers of CQR. Selective sweeps in a locus proximal to pvmdr1, a putative marker for CQR, along with transcriptional regulation genes, distinguish isolates from Indonesia from those in regions where chloroquine remains highly effective. In 106 isolates from Indonesian Papua, the epicentre of CQR, we observe an increasing prevalence of novel SNPs in the candidate resistance gene pvmrp1 since the introduction of dihydroartemisinin-piperaquine. Overall, we provide novel markers for resistance surveillance, supported by evidence of regions under recent directional selection and temporal analysis in this continually evolving parasite.
format Article
id doaj-art-b06abdab48c54fe39ef6faf7dd30b554
institution Kabale University
issn 2041-1723
language English
publishDate 2024-12-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-b06abdab48c54fe39ef6faf7dd30b5542025-01-05T12:34:47ZengNature PortfolioNature Communications2041-17232024-12-0115111310.1038/s41467-024-54964-xGenomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistanceGabrielle C. Ngwana-Joseph0Jody E. Phelan1Emilia Manko2Jamille G. Dombrowski3Simone da Silva Santos4Martha Suarez-Mutis5Gabriel Vélez-Tobón6Alberto Tobón Castaño7Ricardo Luiz Dantas Machado8Claudio R. F. Marinho9Debbie Nolder10François Nosten11Colin J. Sutherland12Susana Campino13Taane G. Clark14Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineOswaldo Cruz Foundation – FiocruzOswaldo Cruz Foundation – FiocruzGrupo Malaria, Facultad de Medicina, Universidad de AntioquiaGrupo Malaria, Facultad de Medicina, Universidad de AntioquiaCentro de Investigação de Microrganismos – CIM, Departamento de Microbiologia e Parasitologia, Universidade Federal FluminenseDepartment of Parasitology, Institute of Biomedical Sciences, University of São PauloUK Health Security Agency, Malaria Reference Laboratory, London School of Hygiene and Tropical MedicineCentre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineDepartment of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineAbstract Increasing reports of chloroquine resistance (CQR) in Plasmodium vivax endemic regions have led to several countries, including Indonesia, to adopt dihydroarteminsin-piperaquine instead. However, the molecular drivers of CQR remain unclear. Using a genome-wide approach, we perform a genomic analysis of 1534 P. vivax isolates across 29 endemic countries, detailing population structure, patterns of relatedness, selection, and resistance profiling, providing insights into potential drivers of CQR. Selective sweeps in a locus proximal to pvmdr1, a putative marker for CQR, along with transcriptional regulation genes, distinguish isolates from Indonesia from those in regions where chloroquine remains highly effective. In 106 isolates from Indonesian Papua, the epicentre of CQR, we observe an increasing prevalence of novel SNPs in the candidate resistance gene pvmrp1 since the introduction of dihydroartemisinin-piperaquine. Overall, we provide novel markers for resistance surveillance, supported by evidence of regions under recent directional selection and temporal analysis in this continually evolving parasite.https://doi.org/10.1038/s41467-024-54964-x
spellingShingle Gabrielle C. Ngwana-Joseph
Jody E. Phelan
Emilia Manko
Jamille G. Dombrowski
Simone da Silva Santos
Martha Suarez-Mutis
Gabriel Vélez-Tobón
Alberto Tobón Castaño
Ricardo Luiz Dantas Machado
Claudio R. F. Marinho
Debbie Nolder
François Nosten
Colin J. Sutherland
Susana Campino
Taane G. Clark
Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
Nature Communications
title Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
title_full Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
title_fullStr Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
title_full_unstemmed Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
title_short Genomic analysis of global Plasmodium vivax populations reveals insights into the evolution of drug resistance
title_sort genomic analysis of global plasmodium vivax populations reveals insights into the evolution of drug resistance
url https://doi.org/10.1038/s41467-024-54964-x
work_keys_str_mv AT gabriellecngwanajoseph genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT jodyephelan genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT emiliamanko genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT jamillegdombrowski genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT simonedasilvasantos genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT marthasuarezmutis genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT gabrielveleztobon genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT albertotoboncastano genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT ricardoluizdantasmachado genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT claudiorfmarinho genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT debbienolder genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT francoisnosten genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT colinjsutherland genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT susanacampino genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance
AT taanegclark genomicanalysisofglobalplasmodiumvivaxpopulationsrevealsinsightsintotheevolutionofdrugresistance