Generative design of crystal structures by point cloud representations and diffusion model

Summary: Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable ma...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhelin Li, Rami Mrad, Runxian Jiao, Guan Huang, Jun Shan, Shibing Chu, Yuanping Chen
Format: Article
Language:English
Published: Elsevier 2025-01-01
Series:iScience
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2589004224028864
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary: Efficiently generating energetically stable crystal structures has long been a challenge in material design, primarily due to the immense arrangement of atoms in a crystal lattice. To facilitate the discovery of stable materials, we present a framework for the generation of synthesizable materials leveraging a point cloud representation to encode intricate structural information. At the heart of this framework lies the introduction of a diffusion model as its foundational pillar. To gauge the efficacy of our approach, we employed it to reconstruct input structures from our training datasets, rigorously validating its high reconstruction performance. Furthermore, we demonstrate the profound potential of point cloud-based crystal diffusion (PCCD) by generating materials, emphasizing their synthesizability. Our research stands as a noteworthy contribution to the advancement of materials design and synthesis through the cutting-edge avenue of generative design instead of conventional substitution or experience-based discovery.
ISSN:2589-0042