Comparative analysis of deep neural network architectures for renewable energy forecasting: enhancing accuracy with meteorological and time-based features

Abstract This study evaluates and differentiates five advanced machine learning models—LSTM, GRU, CNN-LSTM, Random Forest, and SVR—aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R...

Full description

Saved in:
Bibliographic Details
Main Authors: Sunawar Khan, Tehseen Mazhar, Muhammad Amir Khan, Tariq Shahzad, Wasim Ahmad, Afsha Bibi, Mamoon M. Saeed, Habib Hamam
Format: Article
Language:English
Published: Springer 2024-12-01
Series:Discover Sustainability
Subjects:
Online Access:https://doi.org/10.1007/s43621-024-00783-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract This study evaluates and differentiates five advanced machine learning models—LSTM, GRU, CNN-LSTM, Random Forest, and SVR—aimed at precisely estimating solar and wind power generation to enhance renewable energy forecasting. LSTM achieved a remarkable Mean Squared Error (MSE) of 0.010 and R2 score of 0.90, highlighting its proficiency in capturing intricate temporal relationships. GRU closely followed, demonstrating potential as a viable option due to its remarkable combination of computational efficiency and accuracy (MSE = 0.015, R2 = 0.88). In datasets abundant in spatial correlations, the CNN-LSTM hybrid demonstrated its utility by providing novel insights into spatial–temporal patterns; nonetheless, it lagged considerably in accuracy, with a mean squared error (MSE) of 0.020 and a R2 of 0.87. Conversely, traditional models demonstrated a reliable albeit less dynamic ability to elucidate the complexities of renewable energy data; for instance, Random Forest exhibited a mean squared error (MSE) of 0.025, while Support Vector Regression (SVR) recorded an MSE of 0.030. The results affirm that deep learning architectures, particularly LSTM, offer a transformative method for renewable energy forecasting, hence enhancing accuracy and reliability in energy management systems.
ISSN:2662-9984