Stability and Synchronization of a Fractional-Order Unified System with Complex Variables

In this paper, a fractional-order unified system with complex variables is proposed. Firstly, the basic properties of the system including the equilibrium points and symmetry are analyzed. Bifurcations of the system in commensurate-order and incommensurate-order cases are studied. Tangent and period...

Full description

Saved in:
Bibliographic Details
Main Authors: Yanyun Xie, Wenliang Cai, Jing Wang
Format: Article
Language:English
Published: Wiley 2024-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2024/2728661
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a fractional-order unified system with complex variables is proposed. Firstly, the basic properties of the system including the equilibrium points and symmetry are analyzed. Bifurcations of the system in commensurate-order and incommensurate-order cases are studied. Tangent and period-doubling bifurcations can be observed when a derivative order or a parameter is varied. The stabilization the system is investigated via the predict feedback method. Based on the stability theory of fractional-order systems, a projective synchronization for the fractional-order unified complex system is proposed by designing an appropriate controller. Numerical simulations are applied to verify the effectiveness of the proposed scheme.
ISSN:1607-887X