High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether

Abstract In pursuit of the highest possible energy density, researchers shift their focus to the ultimate anode material, lithium metal (Li0), and high‐capacity cathode materials with high nickel content (Ni > 80%). The combination of these aggressive electrodes presents unprecedented challenges...

Full description

Saved in:
Bibliographic Details
Main Authors: Qian Liu, Jiayi Xu, Wei Jiang, Jihyeon Gim, Adam P. Tornheim, Rajesh Pathak, Qijia Zhu, Peng Zuo, Zhenzhen Yang, Krzysztof Z. Pupek, Eungje Lee, Chongmin Wang, Cong Liu, Jason R. Croy, Kang Xu, Zhengcheng Zhang
Format: Article
Language:English
Published: Wiley 2024-12-01
Series:Advanced Science
Subjects:
Online Access:https://doi.org/10.1002/advs.202409662
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846127544734056448
author Qian Liu
Jiayi Xu
Wei Jiang
Jihyeon Gim
Adam P. Tornheim
Rajesh Pathak
Qijia Zhu
Peng Zuo
Zhenzhen Yang
Krzysztof Z. Pupek
Eungje Lee
Chongmin Wang
Cong Liu
Jason R. Croy
Kang Xu
Zhengcheng Zhang
author_facet Qian Liu
Jiayi Xu
Wei Jiang
Jihyeon Gim
Adam P. Tornheim
Rajesh Pathak
Qijia Zhu
Peng Zuo
Zhenzhen Yang
Krzysztof Z. Pupek
Eungje Lee
Chongmin Wang
Cong Liu
Jason R. Croy
Kang Xu
Zhengcheng Zhang
author_sort Qian Liu
collection DOAJ
description Abstract In pursuit of the highest possible energy density, researchers shift their focus to the ultimate anode material, lithium metal (Li0), and high‐capacity cathode materials with high nickel content (Ni > 80%). The combination of these aggressive electrodes presents unprecedented challenges to the electrolyte. Here, we report a hybrid electrolyte consisting of a highly fluorinated ionic liquid and a weakly solvating fluorinated ether, whose hybridization structure enables the reversible operation of a battery chemistry based on Li0 and LiNiO2 (Ni = 100%), delivering nearly theoretical capacity of the latter (up to 249 mAh g−1) for >300 cycles with retention of 78.6% and in absence of unwanted morphological changes in both electrodes. Extensive characterization assisted by molecular dynamic simulation and density functional theory calculations reveals the function of the fluorinated ether to be far more profound than simple dilution and viscosity reduction. Instead, it induces drastic changes in Li+‐solvation environment, the consequence of which engenders simultaneous stabilization of electrode/electrolyte and interfacing via formation of respective interfacial chemistries. This study further unlocks fundamental knowledge underneath the prevailing “diluent strategy” that is extensively applied by the electrolyte researchers and opens more design space for the next‐generation electrolytes and interphases for these coveted battery chemistries.
format Article
id doaj-art-af44ce126dd145fe95f594f7641bd72c
institution Kabale University
issn 2198-3844
language English
publishDate 2024-12-01
publisher Wiley
record_format Article
series Advanced Science
spelling doaj-art-af44ce126dd145fe95f594f7641bd72c2024-12-11T16:00:49ZengWileyAdvanced Science2198-38442024-12-011146n/an/a10.1002/advs.202409662High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated EtherQian Liu0Jiayi Xu1Wei Jiang2Jihyeon Gim3Adam P. Tornheim4Rajesh Pathak5Qijia Zhu6Peng Zuo7Zhenzhen Yang8Krzysztof Z. Pupek9Eungje Lee10Chongmin Wang11Cong Liu12Jason R. Croy13Kang Xu14Zhengcheng Zhang15Chemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAComputational Science Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAApplied Material Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAEnvironmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAApplied Material Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAEnvironmental Molecular Sciences Laboratory Pacific Northwest National Laboratory Richland WA 99352 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USABattery Science Branch Energy Science Division Sensor and Electron Devices Directorate U.S. Army Research Laboratory Adelphi MD 20783 USAChemical Sciences and Engineering Division Argonne National Laboratory 9700 S. Cass Ave. Lemont IL 60439 USAAbstract In pursuit of the highest possible energy density, researchers shift their focus to the ultimate anode material, lithium metal (Li0), and high‐capacity cathode materials with high nickel content (Ni > 80%). The combination of these aggressive electrodes presents unprecedented challenges to the electrolyte. Here, we report a hybrid electrolyte consisting of a highly fluorinated ionic liquid and a weakly solvating fluorinated ether, whose hybridization structure enables the reversible operation of a battery chemistry based on Li0 and LiNiO2 (Ni = 100%), delivering nearly theoretical capacity of the latter (up to 249 mAh g−1) for >300 cycles with retention of 78.6% and in absence of unwanted morphological changes in both electrodes. Extensive characterization assisted by molecular dynamic simulation and density functional theory calculations reveals the function of the fluorinated ether to be far more profound than simple dilution and viscosity reduction. Instead, it induces drastic changes in Li+‐solvation environment, the consequence of which engenders simultaneous stabilization of electrode/electrolyte and interfacing via formation of respective interfacial chemistries. This study further unlocks fundamental knowledge underneath the prevailing “diluent strategy” that is extensively applied by the electrolyte researchers and opens more design space for the next‐generation electrolytes and interphases for these coveted battery chemistries.https://doi.org/10.1002/advs.202409662ionic liquidLi metalLiNiO2MD simulation
spellingShingle Qian Liu
Jiayi Xu
Wei Jiang
Jihyeon Gim
Adam P. Tornheim
Rajesh Pathak
Qijia Zhu
Peng Zuo
Zhenzhen Yang
Krzysztof Z. Pupek
Eungje Lee
Chongmin Wang
Cong Liu
Jason R. Croy
Kang Xu
Zhengcheng Zhang
High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
Advanced Science
ionic liquid
Li metal
LiNiO2
MD simulation
title High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
title_full High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
title_fullStr High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
title_full_unstemmed High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
title_short High‐Energy LiNiO2 Li Metal Batteries Enabled by Hybrid Electrolyte Consisting of Ionic Liquid and Weakly Solvating Fluorinated Ether
title_sort high energy linio2 li metal batteries enabled by hybrid electrolyte consisting of ionic liquid and weakly solvating fluorinated ether
topic ionic liquid
Li metal
LiNiO2
MD simulation
url https://doi.org/10.1002/advs.202409662
work_keys_str_mv AT qianliu highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT jiayixu highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT weijiang highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT jihyeongim highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT adamptornheim highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT rajeshpathak highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT qijiazhu highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT pengzuo highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT zhenzhenyang highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT krzysztofzpupek highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT eungjelee highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT chongminwang highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT congliu highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT jasonrcroy highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT kangxu highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether
AT zhengchengzhang highenergylinio2limetalbatteriesenabledbyhybridelectrolyteconsistingofionicliquidandweaklysolvatingfluorinatedether