Integrability conditions for Boussinesq type systems

The symmetry approach to the classification of evolution integrable partial differential equations (see, for example (Mikhailov et al.,1991)) produces an infinite series of functions, defined in terms of the right hand side, that are conserved densities of any equation having infinitely many infinit...

Full description

Saved in:
Bibliographic Details
Main Authors: R. Hernández Heredero, V. Sokolov
Format: Article
Language:English
Published: Elsevier 2024-12-01
Series:Partial Differential Equations in Applied Mathematics
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666818124003450
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The symmetry approach to the classification of evolution integrable partial differential equations (see, for example (Mikhailov et al.,1991)) produces an infinite series of functions, defined in terms of the right hand side, that are conserved densities of any equation having infinitely many infinitesimal symmetries. For instance, the function ∂f∂ux has to be a conserved density of any integrable equation of the KdV type ut=uxxx+f(u,ux). This fact imposes very strong conditions on the form of the function f. In this paper we construct similar canonical densities for equations of the Boussinesq type. In order to do that, we write the equations as evolution systems and generalise the formal diagonalisation procedure proposed in Mikhailov et al. (1987) to these systems.
ISSN:2666-8181