Wearable Device for Continuous and Real-Time Monitoring of Human Sweat Sodium
Wearable sweat-sensing devices hold significant potential for non-invasive, continuous health monitoring. However, challenges such as ensuring data accuracy, sensor reliability, and measurement stability persist. This study presents the development of a wearable system for the real-time monitoring o...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Sensors |
| Subjects: | |
| Online Access: | https://www.mdpi.com/1424-8220/25/11/3467 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Wearable sweat-sensing devices hold significant potential for non-invasive, continuous health monitoring. However, challenges such as ensuring data accuracy, sensor reliability, and measurement stability persist. This study presents the development of a wearable system for the real-time monitoring of human sweat sodium levels, addressing these challenges through the integration of a novel microfluidic chip and a compact potentiostat. The microfluidic chip, fabricated using hydrophilic materials and designed with vertical channels, optimizes sweat flow, prevents backflow, and minimizes sample contamination. The developed wearable potentiostat, as a measurement device, precisely measures electrical currents across a wide dynamic range, from nanoamperes to milliamperes. Validation results demonstrated accurate sodium concentration measurements ranging from 10 mM to 200 mM, with a coefficient of variation below 4% and excellent agreement with laboratory instruments (intraclass correlation = 0.998). During physical exercise, the device measured a decrease in sweat sodium levels, from 101 mM to 67 mM over 30 min, reflecting typical physiological responses to sweating. These findings confirm the system’s reliability in providing continuous, real-time sweat sodium monitoring. This work advances wearable health-monitoring technologies and lays the groundwork for applications in fitness optimization and personalized hydration strategies. Future work will explore multi-biomarker integration and broader clinical trials to further validate the system’s potential. |
|---|---|
| ISSN: | 1424-8220 |