Tau Protein and β-Amyloid Associated with Neurodegeneration in Myelin Oligodendrocyte Glycoprotein-Induced Experimental Autoimmune Encephalomyelitis (EAE), a Mouse Model of Multiple Sclerosis

Background: The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Grażyna Pyka-Fościak, Ewa Jasek-Gajda, Bożena Wójcik, Grzegorz J. Lis, Jan A. Litwin
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Biomedicines
Subjects:
Online Access:https://www.mdpi.com/2227-9059/12/12/2770
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: The levels of β-amyloid precursor protein (β-APP), tau protein, and phosphorylation of tau (p-tau) protein were examined by quantitative immunohistochemistry in the spinal cord sections of mice suffering from experimental autoimmune encephalomyelitis (EAE) in the successive phases of the disease: onset, peak, and chronic. Methods: EAE was induced in C57BL/6 mice by immunization with MOG35–55 peptide. The degree of pathological changes was assessed in cross-sections of the entire spinal cord. Results: β-APP expression was observed in the white matter and colocalized with some Iba-1-positive macrophages/microglia. It increased in the peak phase of EAE and remained at the same level in the chronic phase. During the onset and peak phases of EAE, expression of tau protein was observed in nerve fibers and nerve cell perikaryons, with a predominance of nerve fibers, whereas in the chronic phase, tau was labeled mainly in the perikaryons of nerve cells, with its content significantly decreased. P-tau immunostaining was seen only in nerve fibers. Conclusions: The expression of p-tau increased with the progression of EAE, reaching the maximum in the chronic phase. The correlation between these proteins and neurodegeneration/neuroinflammation highlights their potential roles in the progression of neurodegenerative mechanisms in MS.
ISSN:2227-9059