Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination

Abstract This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system‐enabled low‐Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Z. C. Waldron, K. Garcia‐Sage, J. P. Thayer, E. K. Sutton, V. Ray, D. D. Rowlands, F. G. Lemoine, S. B. Luthcke, M. Kuznetsova, R. Ringuette, L. Rastaetter, G. D. Berland
Format: Article
Language:English
Published: Wiley 2024-02-01
Series:Space Weather
Subjects:
Online Access:https://doi.org/10.1029/2023SW003603
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841536428715016192
author Z. C. Waldron
K. Garcia‐Sage
J. P. Thayer
E. K. Sutton
V. Ray
D. D. Rowlands
F. G. Lemoine
S. B. Luthcke
M. Kuznetsova
R. Ringuette
L. Rastaetter
G. D. Berland
author_facet Z. C. Waldron
K. Garcia‐Sage
J. P. Thayer
E. K. Sutton
V. Ray
D. D. Rowlands
F. G. Lemoine
S. B. Luthcke
M. Kuznetsova
R. Ringuette
L. Rastaetter
G. D. Berland
author_sort Z. C. Waldron
collection DOAJ
description Abstract This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system‐enabled low‐Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. The research introduces an updated interface for the GEODYN‐II POD software, leveraging high‐precision space geodetic POD to investigate satellite drag and assess density models. This work presents a case study to examine five models (NRLMSIS2.0, DTM2020, JB2008, TIEGCM, and CTIPe) using precise science orbit (PSO) solutions of the Ice, Cloud, and Land Elevation Satellite‐2 (ICESat‐2). The PSO is used as tracking measurements to construct orbit fits, enabling an evaluation according to each model's ability to redetermine the orbit. Relative in‐track deviations, quantified by in‐track residuals and root‐mean‐square errors (RMSe), are treated as proxies for model densities that differ from an unknown true density. The study investigates assumptions related to the treatment of the drag coefficient and leverages them to eliminate bias and effectively scale model density. Assessment results and interpretations are dictated by the timescale at which the scaling occurs. DTM2020 requires the least scaling (∼−7%) to achieve orbit fits closely matching the PSO within an in‐track RMSe of 7 m when scaled over 2 weeks and 2 m when scaled daily. The remaining models require substantial scaling of the mean density offset (∼30 − 75%) to construct orbit fits that meet the aforementioned RMSe criteria. All models exhibit slight over or under‐sensitivity to geomagnetic activity according to trends in their 24‐hr scaling factors.
format Article
id doaj-art-ac30c7e7c1ef420bb2d217a3f3d2fe88
institution Kabale University
issn 1542-7390
language English
publishDate 2024-02-01
publisher Wiley
record_format Article
series Space Weather
spelling doaj-art-ac30c7e7c1ef420bb2d217a3f3d2fe882025-01-14T16:30:42ZengWileySpace Weather1542-73902024-02-01222n/an/a10.1029/2023SW003603Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit DeterminationZ. C. Waldron0K. Garcia‐Sage1J. P. Thayer2E. K. Sutton3V. Ray4D. D. Rowlands5F. G. Lemoine6S. B. Luthcke7M. Kuznetsova8R. Ringuette9L. Rastaetter10G. D. Berland11CU Boulder Space Weather Technology, Research, and Education Center Boulder CO USASpace Weather Laboratory Community Coordinated Modeling Center NASA Goddard Greenbelt MD USACU Boulder Space Weather Technology, Research, and Education Center Boulder CO USACU Boulder Space Weather Technology, Research, and Education Center Boulder CO USACU Boulder Space Weather Technology, Research, and Education Center Boulder CO USAGeodesy and Geophysics Laboratory NASA Goddard Greenbelt MD USAGeodesy and Geophysics Laboratory NASA Goddard Greenbelt MD USAGeodesy and Geophysics Laboratory NASA Goddard Greenbelt MD USASpace Weather Laboratory Community Coordinated Modeling Center NASA Goddard Greenbelt MD USACenter for HelioAnalytics NASA Goddard Greenbelt MD USASpace Weather Laboratory Community Coordinated Modeling Center NASA Goddard Greenbelt MD USADepartment of Aerospace Engineering Sciences CU Boulder Boulder CO USAAbstract This study focuses on utilizing the increasing availability of satellite trajectory data from global navigation satellite system‐enabled low‐Earth orbiting satellites and their precision orbit determination (POD) solutions to expand and refine thermospheric model validation capabilities. The research introduces an updated interface for the GEODYN‐II POD software, leveraging high‐precision space geodetic POD to investigate satellite drag and assess density models. This work presents a case study to examine five models (NRLMSIS2.0, DTM2020, JB2008, TIEGCM, and CTIPe) using precise science orbit (PSO) solutions of the Ice, Cloud, and Land Elevation Satellite‐2 (ICESat‐2). The PSO is used as tracking measurements to construct orbit fits, enabling an evaluation according to each model's ability to redetermine the orbit. Relative in‐track deviations, quantified by in‐track residuals and root‐mean‐square errors (RMSe), are treated as proxies for model densities that differ from an unknown true density. The study investigates assumptions related to the treatment of the drag coefficient and leverages them to eliminate bias and effectively scale model density. Assessment results and interpretations are dictated by the timescale at which the scaling occurs. DTM2020 requires the least scaling (∼−7%) to achieve orbit fits closely matching the PSO within an in‐track RMSe of 7 m when scaled over 2 weeks and 2 m when scaled daily. The remaining models require substantial scaling of the mean density offset (∼30 − 75%) to construct orbit fits that meet the aforementioned RMSe criteria. All models exhibit slight over or under‐sensitivity to geomagnetic activity according to trends in their 24‐hr scaling factors.https://doi.org/10.1029/2023SW003603thermospheric model assessmentprecision orbit determinationthermospheric neutral densityprecise science orbitsGEODYNicesat‐2
spellingShingle Z. C. Waldron
K. Garcia‐Sage
J. P. Thayer
E. K. Sutton
V. Ray
D. D. Rowlands
F. G. Lemoine
S. B. Luthcke
M. Kuznetsova
R. Ringuette
L. Rastaetter
G. D. Berland
Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
Space Weather
thermospheric model assessment
precision orbit determination
thermospheric neutral density
precise science orbits
GEODYN
icesat‐2
title Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
title_full Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
title_fullStr Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
title_full_unstemmed Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
title_short Assessing Thermospheric Neutral Density Models Using GEODYN's Precision Orbit Determination
title_sort assessing thermospheric neutral density models using geodyn s precision orbit determination
topic thermospheric model assessment
precision orbit determination
thermospheric neutral density
precise science orbits
GEODYN
icesat‐2
url https://doi.org/10.1029/2023SW003603
work_keys_str_mv AT zcwaldron assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT kgarciasage assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT jpthayer assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT eksutton assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT vray assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT ddrowlands assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT fglemoine assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT sbluthcke assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT mkuznetsova assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT rringuette assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT lrastaetter assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination
AT gdberland assessingthermosphericneutraldensitymodelsusinggeodynsprecisionorbitdetermination