Modeling the electrical conductivity relationship between saturated paste extract and 1:2.5 dilution in different soil textural classes
Regression models were developed to estimate the electrical conductivity of saturated paste extract (ECe) from the electrical conductivity of soil-water ratio (EC1:2.5) for different soil textural classes. ECe is a crucial parameter used to indicate the presence, type, and distribution of salinity i...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-12-01
|
| Series: | Frontiers in Soil Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fsoil.2024.1421661/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Regression models were developed to estimate the electrical conductivity of saturated paste extract (ECe) from the electrical conductivity of soil-water ratio (EC1:2.5) for different soil textural classes. ECe is a crucial parameter used to indicate the presence, type, and distribution of salinity in soils. However, determining ECe is demanding, time-consuming, requires considerable skill to accurately identify the correct soil saturation point, and is not routinely performed by soil testing laboratories. Many laboratories, instead, commonly measure the electrical conductivity of soil-water extracts at various dilutions, such as EC1:1, EC1:2.5, or EC1:5. In this study, 706 soil samples were collected from depths of 0 - 30 cm across three rice irrigation schemes to determine EC1:2.5, with 50% analyzed for ECe. ECe values were grouped based on soil textural classes. The results showed a strong linear relationship between EC1:2.5 and ECe values, with a high coefficient of determination (R² > 0.95). The Root Mean Square Error values were low (1.4 < RMSE), and the Mean Absolute Error values were similarly low (0.85 < MAE). Therefore, the regression models developed provide a practical means of estimating ECe for various soil textural classes, thereby enhancing soil salinity assessment and management strategies. |
|---|---|
| ISSN: | 2673-8619 |