Local plastic deformation in the vicinity of topologically close-packed phases in a Ni-based single crystal superalloy

The role of a topologically close-packed (TCP) phase (μ phase) on the plastic deformation of a Ni-based superalloy was investigated employing a combination of in situ scanning electron microscope micropillar compression and atomic-scale characterization using atom probe tomography and transmission e...

Full description

Saved in:
Bibliographic Details
Main Authors: Sangwon Lee, Jeonghyeon Do, Baig Gyu Choi, Ujjval Bansal, Christoph Kirchlechner, Pyuck-Pa Choi, Subin Lee
Format: Article
Language:English
Published: Elsevier 2025-02-01
Series:Materials & Design
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0264127525000206
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The role of a topologically close-packed (TCP) phase (μ phase) on the plastic deformation of a Ni-based superalloy was investigated employing a combination of in situ scanning electron microscope micropillar compression and atomic-scale characterization using atom probe tomography and transmission electron microscopy. Micropillar tests revealed two distinct slip behaviors: TCP-free pillars deformed via multiple slip systems, whereas TCP-containing pillars deformed by single slip. Notably, while previous studies have reported fracture at the TCP/γ' interface, our findings revealed that in the TCP-containing pillars, deformation was rarely observed at the interface. Instead, slip predominantly occurred in regions approximately 50–100 nm away from the interface. Chemical analysis near the TCP/γ' interface via APT showed an excess Ta content near the interface increasing the antiphase boundary energy and enhancing local order strengthening. Moreover, an approximate 8% lattice misfit at the TCP/γ' interface, coupled with the elastic mismatch between the two phases, provided additional slip resistance in the vicinity of the interface. This study sheds light on the intricate interplay between TCP phase formation, microstructural evolution, and mechanical properties in Ni-based superalloys offering valuable insights into the role of the TCP phases.
ISSN:0264-1275