Unveiling nodeless unconventional superconductivity proximate to honeycomb-vacancy ordering in the Ir-Sb binary system

Abstract Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growt...

Full description

Saved in:
Bibliographic Details
Main Authors: V. Sazgari, T. P. Ying, J. N. Graham, C. Mielke III, D. Das, S. S. Islam, S. Shin, M. Medarde, M. Bartkowiak, R. Khasanov, H. Luetkens, H. Hosono, Z. Guguchia
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Communications Physics
Online Access:https://doi.org/10.1038/s42005-024-01857-6
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Vacancies in solid-state physics are underexplored in materials with strong electron-electron correlations. Recent research on the Ir-Sb binary system revealed an extended buckled-honeycomb vacancy (BHV) order. Superconductivity arises by suppressing BHV ordering through high-pressure growth with excess Ir atoms or Rh substitution, yet the superconducting pairing nature remains unknown. To explore this, we conducted muon spin rotation experiments on Ir1−δ Sb (synthesized at 5.5 GPa, T c = 4.2 K) and ambient pressure synthesized optimally Rh-doped Ir1−x Rh x Sb (x=0.3, T c = 2.7 K). The exponential temperature dependence of the superfluid density suggests a fully gapped superconducting state exists in both samples. The ratio of T c to the superfluid density resembles that of unconventional superconductors. A significant increase in the superfluid density in the high-pressure synthesized sample correlates with T c, indicating that unconventional superconductivity is intrinsic to the Ir-Sb binary system. These findings, along with the dome-shaped phase diagram, highlight IrSb as the first unconventional superconducting parent phase with ordered vacancies, requiring further theoretical investigations.
ISSN:2399-3650