Dirichlet problems with skew-symmetric drift terms
We prove existence of finite energy solutions for a linear Dirichlet problem with a drift and a convection term of the form $A\,E(x)\nabla u + \mathrm{div}(u\,E(x))$, with $A > 0$ and $E$ in $(L^{r}(\Omega ))^{N}$. The result is obtained using a nonlinear function of $u$ as test function, in orde...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Académie des sciences
2024-05-01
|
| Series: | Comptes Rendus. Mathématique |
| Subjects: | |
| Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.564/ |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|