Analysis of Acute and Short-Term Fluoride Toxicity in Zebrafish Embryo and Sac–Fry Stages Based on Bayesian Model Averaging

Acute and short-term toxicity tests are foundational to toxicology research. These tests offer preliminary insights into the fundamental toxicity characteristics of the chemicals under evaluation and provide essential data for chronic toxicity assessments. Fluoride is a common chemical in aquatic en...

Full description

Saved in:
Bibliographic Details
Main Authors: Tingxu Jin, Xiumei Yang, Yuanhui Zhu, Cheng Yan, Rui Yan, Qianlei Yang, Hairu Huang, Yan An
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Toxics
Subjects:
Online Access:https://www.mdpi.com/2305-6304/12/12/902
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Acute and short-term toxicity tests are foundational to toxicology research. These tests offer preliminary insights into the fundamental toxicity characteristics of the chemicals under evaluation and provide essential data for chronic toxicity assessments. Fluoride is a common chemical in aquatic environments; however, the findings of toxicological data, such as LC<sub>50</sub> for aquatic organisms, often exhibit inconsistency. Consequently, this study employed zebrafish as a model organism during their early life stages to assess the acute and short-term toxicity of fluoride exposure. Bayesian model averaging was utilized to calculate the LC<sub>50</sub>/EC<sub>50</sub> values and establish baseline concentrations. The results indicated a dose–response relationship between water fluoride concentration and harmful outcomes. The 20 mg/L group was identified as the lowest observed adverse effect level (LOAEL) for the majority of toxicity indicators and warrants special attention. Based on the BBMD model averages, the LC<sub>50</sub> of fluoride for 1 to 5 days post-fertilization (dpf) zebrafish was 147.00, 80.80, 61.25, 56.50, and 37.50 mg/L, while the EC<sub>50</sub> of cumulative malformation rate for 5 dpf zebrafish was 59.75 mg/L. As the benchmark response (BMR) increased, both the benchmark concentrations (BMCs) and benchmark dose levels (BMDLs) also increased. The research aims to provide essential data for the development of environmental water guidelines and to mitigate ecological risks associated with fluoride in aquatic ecosystems.
ISSN:2305-6304