Optimization of the Fermentation Enrichment Method for Oat Non-starch Polysaccharides and Study of Their Immunostimulatory Activity

In order to enhance the yield of oat non-starch polysaccharide (ONSP), the extraction process was optimized and its immunological activity was investigated. This study employed microbial fermentation-assisted extraction, optimizing the process for oat non-starch polysaccharide (ONSP1) using a one-wa...

Full description

Saved in:
Bibliographic Details
Main Authors: Ruohan GAO, Nan MA, Mingzhe YANG, Jiabao CAO, Xia WANG, Baoxin LU
Format: Article
Language:zho
Published: The editorial department of Science and Technology of Food Industry 2025-05-01
Series:Shipin gongye ke-ji
Subjects:
Online Access:http://www.spgykj.com/cn/article/doi/10.13386/j.issn1002-0306.2024090061
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to enhance the yield of oat non-starch polysaccharide (ONSP), the extraction process was optimized and its immunological activity was investigated. This study employed microbial fermentation-assisted extraction, optimizing the process for oat non-starch polysaccharide (ONSP1) using a one-way response surface methodology. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS) were employed to determine the structural characteristics of ONSP. Additionally, the immunological activity of ONSP was investigated and compared with that of oat non-starch polysaccharide (ONSP2) extracted through the conventional hot water method. The results demonstrated that the optimal extraction process for ONSP1 was achieved with a 5% of the inoculum and fermentation at 34 ℃ for 26 h, resulting in a yield of ONSP1 at 8.60%±0.04%. Both ONSP1 and ONSP2 were composed of glucose, arabinose, and xylose, with the contents of arabinose and xylose of ONSP1 were significantly higher than those of ONSP2 (P<0.05). Despite the lower molecular weight of ONSP1 (47.2 kDa) compared to ONSP2 (53.2 kDa), ONSP1 had a significantly higher β-glucan content (P<0.05). Furthermore, both ONSP1 and ONSP2 demonstrated the capacity to promote the proliferation of RAW264.7 cells, with ONSP1 exhibiting a more pronounced immune-stimulating activity. In conclusion, microbial fermentation enrichment resulted in oat non-starch polysaccharides with a higher β-glucan content and stronger immunostimulatory activity. This study provides new insights for further investigation into the bioimmunological activities and structural relationships of oat non-starch polysaccharides.
ISSN:1002-0306