Edge Computing Architecture for the Management of Underwater Cultural Heritage
Underwater cultural heritage (UCH) is a valuable resource that preserves humanity’s historical legacy, offering insights into traditions and civilisations. Despite its significance, UCH faces threats from inadequate regulatory frameworks, insufficient conservation technologies, and climate-induced e...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Journal of Marine Science and Engineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-1312/12/12/2250 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Underwater cultural heritage (UCH) is a valuable resource that preserves humanity’s historical legacy, offering insights into traditions and civilisations. Despite its significance, UCH faces threats from inadequate regulatory frameworks, insufficient conservation technologies, and climate-induced environmental changes. This paper proposes an innovative platform combining the internet of underwater things and edge computing technologies to enhance UCH’s real-time monitoring, localisation, and management. The platform processes data through a central unit installed on a buoy near heritage sites, enabling efficient data analysis and decision making without relying on cloud connectivity. Integrating acoustic communication systems, LoRa technology, and nonterrestrial networks supports a robust multilayered communication infrastructure for continuous operation, even in remote maritime areas. The platform’s edge node deploys artificial intelligence models for real-time risk assessment, focusing on key environmental parameters to predict and mitigate corrosion rates and climate-related threats. A case study illustrates the system’s capabilities in underwater localisation, demonstrating how edge computing and acoustic triangulation techniques enable precise tracking. |
|---|---|
| ISSN: | 2077-1312 |