Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives

<p>During the Mid-Pleistocene Transition (MPT), ca. 1200–800 000 years ago (ka), the Earth's glacial cycles changed from 41 to 100 kyr periodicity. The emergence of this longer ice age periodicity was accompanied by higher global ice volume in glacial periods and lower global ice volume i...

Full description

Saved in:
Bibliographic Details
Main Authors: J. R. W. Martin, J. B. Pedro, T. R. Vance
Format: Article
Language:English
Published: Copernicus Publications 2024-11-01
Series:Climate of the Past
Online Access:https://cp.copernicus.org/articles/20/2487/2024/cp-20-2487-2024.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846169890016198656
author J. R. W. Martin
J. B. Pedro
J. B. Pedro
T. R. Vance
author_facet J. R. W. Martin
J. B. Pedro
J. B. Pedro
T. R. Vance
author_sort J. R. W. Martin
collection DOAJ
description <p>During the Mid-Pleistocene Transition (MPT), ca. 1200–800 000 years ago (ka), the Earth's glacial cycles changed from 41 to 100 kyr periodicity. The emergence of this longer ice age periodicity was accompanied by higher global ice volume in glacial periods and lower global ice volume in interglacial periods. Since there is no known change in external orbital forcing across the MPT, it is generally agreed that the cause of this transition is internal to the Earth system. Resolving the climate, carbon cycle, and cryosphere processes responsible for the MPT remains a major challenge in Earth and palaeoclimate science. To address this challenge, the international ice core community has prioritised recovery of an ice core record spanning the MPT interval.</p> <p>Here we present results from a simple generalised least-squares (GLS) model that predicts atmospheric <span class="inline-formula">CO<sub>2</sub></span> out to 1.8 Myr. Our prediction utilises existing records of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) from Antarctic ice cores spanning the past 800 kyr along with the existing LR04 benthic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">δ</mi><msub><mrow class="chem"><msup><mi/><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mtext>calcite</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e239a5aaf7eafa15f9a3873dd31d8c36"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-20-2487-2024-ie00001.svg" width="50pt" height="16pt" src="cp-20-2487-2024-ie00001.png"/></svg:svg></span></span> stack (Lisiecki and Raymo, 2005; hereafter “benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> stack”) from marine sediment cores. Our predictions assume that the relationship between <span class="inline-formula">CO<sub>2</sub></span> and benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> over the past 800 000 years can be extended over the last 1.5 million years. The implicit null hypothesis is that there has been no fundamental change in feedbacks between atmospheric <span class="inline-formula">CO<sub>2</sub></span> and the climate parameters represented by benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span>, global ice volume, and ocean temperature.</p> <p>We test the GLS-model-predicted <span class="inline-formula">CO<sub>2</sub></span> concentrations against observed blue ice <span class="inline-formula">CO<sub>2</sub></span> concentrations, <span class="inline-formula"><i>δ</i><sup>11</sup>B</span>-based <span class="inline-formula">CO<sub>2</sub></span> reconstructions from marine sediment cores, and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> of leaf-wax-based <span class="inline-formula">CO<sub>2</sub></span> reconstructions (Higgins et al., 2015; Yan et al., 2019; Yamamoto et al., 2022). We show that there is no clear evidence from the existing blue ice or proxy <span class="inline-formula">CO<sub>2</sub></span> data to reject our predictions or our associated null hypothesis. A definitive test and/or rejection of the null hypothesis may be provided following recovery and analysis of continuous oldest ice core records from Antarctica, which are still several years away. The record presented here should provide a useful comparison for the oldest ice core records and an opportunity for further constraints on the processes involved in the MPT.</p>
format Article
id doaj-art-a7a2f4cf42aa4dbdbeacaf3cd50dcc3b
institution Kabale University
issn 1814-9324
1814-9332
language English
publishDate 2024-11-01
publisher Copernicus Publications
record_format Article
series Climate of the Past
spelling doaj-art-a7a2f4cf42aa4dbdbeacaf3cd50dcc3b2024-11-12T07:32:14ZengCopernicus PublicationsClimate of the Past1814-93241814-93322024-11-01202487249710.5194/cp-20-2487-2024Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archivesJ. R. W. Martin0J. B. Pedro1J. B. Pedro2T. R. Vance3Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, AustraliaAustralian Antarctic Division, Kingston, 7050, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7004, Australia<p>During the Mid-Pleistocene Transition (MPT), ca. 1200–800 000 years ago (ka), the Earth's glacial cycles changed from 41 to 100 kyr periodicity. The emergence of this longer ice age periodicity was accompanied by higher global ice volume in glacial periods and lower global ice volume in interglacial periods. Since there is no known change in external orbital forcing across the MPT, it is generally agreed that the cause of this transition is internal to the Earth system. Resolving the climate, carbon cycle, and cryosphere processes responsible for the MPT remains a major challenge in Earth and palaeoclimate science. To address this challenge, the international ice core community has prioritised recovery of an ice core record spanning the MPT interval.</p> <p>Here we present results from a simple generalised least-squares (GLS) model that predicts atmospheric <span class="inline-formula">CO<sub>2</sub></span> out to 1.8 Myr. Our prediction utilises existing records of atmospheric carbon dioxide (<span class="inline-formula">CO<sub>2</sub></span>) from Antarctic ice cores spanning the past 800 kyr along with the existing LR04 benthic <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M5" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi mathvariant="italic">δ</mi><msub><mrow class="chem"><msup><mi/><mn mathvariant="normal">18</mn></msup><mi mathvariant="normal">O</mi></mrow><mtext>calcite</mtext></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="50pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="e239a5aaf7eafa15f9a3873dd31d8c36"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="cp-20-2487-2024-ie00001.svg" width="50pt" height="16pt" src="cp-20-2487-2024-ie00001.png"/></svg:svg></span></span> stack (Lisiecki and Raymo, 2005; hereafter “benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> stack”) from marine sediment cores. Our predictions assume that the relationship between <span class="inline-formula">CO<sub>2</sub></span> and benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span> over the past 800 000 years can be extended over the last 1.5 million years. The implicit null hypothesis is that there has been no fundamental change in feedbacks between atmospheric <span class="inline-formula">CO<sub>2</sub></span> and the climate parameters represented by benthic <span class="inline-formula"><i>δ</i><sup>18</sup>O</span>, global ice volume, and ocean temperature.</p> <p>We test the GLS-model-predicted <span class="inline-formula">CO<sub>2</sub></span> concentrations against observed blue ice <span class="inline-formula">CO<sub>2</sub></span> concentrations, <span class="inline-formula"><i>δ</i><sup>11</sup>B</span>-based <span class="inline-formula">CO<sub>2</sub></span> reconstructions from marine sediment cores, and <span class="inline-formula"><i>δ</i><sup>13</sup>C</span> of leaf-wax-based <span class="inline-formula">CO<sub>2</sub></span> reconstructions (Higgins et al., 2015; Yan et al., 2019; Yamamoto et al., 2022). We show that there is no clear evidence from the existing blue ice or proxy <span class="inline-formula">CO<sub>2</sub></span> data to reject our predictions or our associated null hypothesis. A definitive test and/or rejection of the null hypothesis may be provided following recovery and analysis of continuous oldest ice core records from Antarctica, which are still several years away. The record presented here should provide a useful comparison for the oldest ice core records and an opportunity for further constraints on the processes involved in the MPT.</p>https://cp.copernicus.org/articles/20/2487/2024/cp-20-2487-2024.pdf
spellingShingle J. R. W. Martin
J. B. Pedro
J. B. Pedro
T. R. Vance
Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
Climate of the Past
title Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
title_full Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
title_fullStr Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
title_full_unstemmed Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
title_short Predicting trends in atmospheric CO<sub>2</sub> across the Mid-Pleistocene Transition using existing climate archives
title_sort predicting trends in atmospheric co sub 2 sub across the mid pleistocene transition using existing climate archives
url https://cp.copernicus.org/articles/20/2487/2024/cp-20-2487-2024.pdf
work_keys_str_mv AT jrwmartin predictingtrendsinatmosphericcosub2subacrossthemidpleistocenetransitionusingexistingclimatearchives
AT jbpedro predictingtrendsinatmosphericcosub2subacrossthemidpleistocenetransitionusingexistingclimatearchives
AT jbpedro predictingtrendsinatmosphericcosub2subacrossthemidpleistocenetransitionusingexistingclimatearchives
AT trvance predictingtrendsinatmosphericcosub2subacrossthemidpleistocenetransitionusingexistingclimatearchives