Feasibility study of AI-assisted multi-parameter MRI diagnosis of prostate cancer

Abstract Distinguishing between benign and malignant prostate lesions in magnetic resonance imaging (MRI) poses challenges that affect prostate cancer screening accuracy. We propose a novel computer-aided diagnosis (CAD) system to extract cancerous lesions from the prostate in multi-parametric MRI (...

Full description

Saved in:
Bibliographic Details
Main Authors: Yibo Xu, Rongjiang Wang, Zhihai Fang, Jianer Tang
Format: Article
Language:English
Published: Nature Portfolio 2025-03-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-024-84516-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Distinguishing between benign and malignant prostate lesions in magnetic resonance imaging (MRI) poses challenges that affect prostate cancer screening accuracy. We propose a novel computer-aided diagnosis (CAD) system to extract cancerous lesions from the prostate in multi-parametric MRI (mp-MRI), assessing the feasibility of using artificial intelligence for detecting clinically significant prostate cancer (PCa). A retrospective study was conducted on 106 patients who underwent mp-MRI from 2021 to 2024 at a single center. We analyzed three sequences (T2W, DCE, and DWI) and collected 137 mp-MRI images corresponding to pathological sections. From these, we obtained 274 sets of ROI data, using 206 for training and validation, and 68 for testing. A feature extractor was developed using a pre-trained ResNet50 model combined with a multi-head attention mechanism to fuse modality-specific features and perform classification. The experimental results indicate that our model demonstrates high classification performance, achieving an AUC of 0.89. The PR curve shows high precision across most recall values, with an AUC of 0.91. We developed a novel CAD system based on deep learning ResNet50 models to assess the risk of prostate malignancy in mpMRI images. High classification ability is achieved, and combining the attention mechanism or optimization strategy can improve the performance of the model in medical imaging.
ISSN:2045-2322