Efficient preconditioning strategies for accelerating GMRES in block-structured nonlinear systems for image deblurring.
We propose an efficient preconditioning strategy to accelerate the convergence of Krylov subspace methods, specifically for solving complex nonlinear systems with a block five-by-five structure, commonly found in cell-centered finite difference discretizations for image deblurring using mean curvatu...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Public Library of Science (PLoS)
2025-01-01
|
| Series: | PLoS ONE |
| Online Access: | https://doi.org/10.1371/journal.pone.0322146 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We propose an efficient preconditioning strategy to accelerate the convergence of Krylov subspace methods, specifically for solving complex nonlinear systems with a block five-by-five structure, commonly found in cell-centered finite difference discretizations for image deblurring using mean curvature techniques. Our method introduces two innovative preconditioned matrices, analyzed spectrally to show a favorable eigenvalue distribution that accelerates convergence in the Generalized Minimal Residual (GMRES) method. This technique significantly improves image quality, as measured by peak signal-to-noise ratio (PSNR), and demonstrates faster convergence compared to traditional GMRES, requiring minimal CPU time and few iterations for exceptional deblurring performance. The preconditioned matrices' eigenvalues cluster around 1, indicating a beneficial spectral distribution. The source code is available at https://github.com/shahbaz1982/Precondition-Matrix. |
|---|---|
| ISSN: | 1932-6203 |