Optimizing Dielectric Rod Antenna Performance with Spoof Surface Plasmon Polariton-Based Feeding Method

This study investigates the use of spoof surface plasmon polaritons (SSPPs) as an effective feeding mechanism for antennas functioning within the extremely high-frequency (EHF) range. A novel method is proposed for feeding a dielectric rod antenna with SSPPs, featuring a simple design made from FR-4...

Full description

Saved in:
Bibliographic Details
Main Authors: Rishitej Chaparala, Shaik Imamvali, Sreenivasulu Tupakula, Mohammad Aljaidi, Shonak Bansal, Krishna Prakash, Ali Fayez Alkoradees
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/24/23/7543
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study investigates the use of spoof surface plasmon polaritons (SSPPs) as an effective feeding mechanism for antennas functioning within the extremely high-frequency (EHF) range. A novel method is proposed for feeding a dielectric rod antenna with SSPPs, featuring a simple design made from FR-4 material with a relative permittivity of 4.3. In contrast to traditional tapered dielectric rod antennas and their feeding configurations, this design shows promise for achieving a gain of up to 16.85 dBi with an antenna length of 7.6 λ<sub>0</sub>. By carefully optimizing the design, impedance matching and directional radiation characteristics were obtained at 7.3 GHz. Simulations were conducted using CST Microwave Studio to validate and evaluate the design’s performance. The enhanced gain, improved impedance bandwidth, and use of cost-effective materials such as FR-4 present a compelling case for adopting this design in future wireless communication technologies. Additionally, the remote sensing properties of the feeder can be utilized for concealed object detection, material characterization, and the analysis of the spectral properties of materials.
ISSN:1424-8220