Negative magnetophoresis guided unidirectional cell patterning on culture surface

Cell patterning is a significant tool in tissue engineering, enabling the directed deposition of cells into specific locations to achieve biological relevance. Conventional cell patterning techniques often involve time-consuming modifications or bioprinting, potentially affecting cell viability. Thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Melike Cagan-Algan, Muge Anil-Inevi, Seren Kecili, Ece Inal, H. Cumhur Tekin, Gulistan Mese, Engin Ozcivici
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Biomedical Engineering Advances
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667099225000258
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cell patterning is a significant tool in tissue engineering, enabling the directed deposition of cells into specific locations to achieve biological relevance. Conventional cell patterning techniques often involve time-consuming modifications or bioprinting, potentially affecting cell viability. This study presents a novel, single-step magnetic patterning system for label-free linear cell patterning using negative magnetophoresis. A custom magnetic system and culture chamber enabled the rapid (3 h) imprinting of cells on a surface without substrate modification. This approach achieved linear patterns with a thickness of ∼1 mm using a safe concentration of a paramagnetic agent (5 mM Gadolinium chelate, Gadobutrol). The patterns maintained structural integrity for 48 h and were successfully combined with osteogenic and adipogenic differentiation protocols. This cost-effective and contactless manipulation technique holds promise for diverse applications in tissue engineering, drug discovery, and fundamental cell biology research.
ISSN:2667-0992