An improved electrocardiogram arrhythmia classification performance with feature optimization

Abstract Background Automatic classification of arrhythmias based on electrocardiography (ECG) data faces several significant challenges, particularly due to the substantial volume of clinical data involved in ECG signal analysis. The volume of clinical data has increased considerably, especially wi...

Full description

Saved in:
Bibliographic Details
Main Authors: Annisa Darmawahyuni, Siti Nurmaini, Bambang Tutuko, Muhammad Naufal Rachmatullah, Firdaus Firdaus, Ade Iriani Sapitri, Anggun Islami, Jordan Marcelino, Rendy Isdwanta, Muhammad Ikhwan Perwira
Format: Article
Language:English
Published: BMC 2024-12-01
Series:BMC Medical Informatics and Decision Making
Subjects:
Online Access:https://doi.org/10.1186/s12911-024-02822-7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Background Automatic classification of arrhythmias based on electrocardiography (ECG) data faces several significant challenges, particularly due to the substantial volume of clinical data involved in ECG signal analysis. The volume of clinical data has increased considerably, especially with the emergence of new clinical symptoms and signs in various arrhythmia conditions. These symptoms and signs, which serve as distinguishing features, can number in the tens of thousands. However, the inclusion of irrelevant features can lead to inaccurate classification results. Method To identify the most relevant and optimal features for ECG arrhythmia classification, common feature extraction techniques have been applied to ECG signals, specifically shallow and deep feature extraction. Additionally, a feature selection technique based on a metaheuristic optimization algorithm is utilized following the ECG feature extraction process. Results Our findings indicate that shallow feature extraction based on the time-domain analysis, combined with feature selection using a metaheuristic optimization algorithm, outperformed other ECG feature extraction and selection techniques. Among eight features of time-domain anaylsis, the selected feature is one to three features from RR-interval assesment, achieving 100% accuracy, sensitivity, specificity, and precision for ECG arrhythmia classification. Conclusion The proposed end-to-end architecture for ECG arrhythmia classification demonstrates simplicity in parameters and low complexity, making it highly effective for practical applications.
ISSN:1472-6947