The Journey of Artificial Intelligence in Food Authentication: From Label Attribute to Fraud Detection

Artificial intelligence (AI) tends to be extensively used to develop reliable, fast, and inexpensive tools for authenticity control. Initially applied for food differentiation as an alternative to statistical methods, AI tools opened a new dimension in adulteration identification based on images. Th...

Full description

Saved in:
Bibliographic Details
Main Authors: Dana Alina Magdas, Ariana Raluca Hategan, Maria David, Camelia Berghian-Grosan
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Foods
Subjects:
Online Access:https://www.mdpi.com/2304-8158/14/10/1808
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Artificial intelligence (AI) tends to be extensively used to develop reliable, fast, and inexpensive tools for authenticity control. Initially applied for food differentiation as an alternative to statistical methods, AI tools opened a new dimension in adulteration identification based on images. This comprehensive review aims to emphasize the main pillars for applying AI for food authentication: (i) food classification; (ii) detection of subtle adulteration through extraneous ingredient addition/substitution; and (iii) fast recognition tools development based on image processing. As opposed to statistical methods, AI proves to be a valuable tool for quality and authenticity assessment, especially for input data represented by digital images. This review highlights the successful application of AI on data obtained through laborious, highly sensitive analytical methods up to very easy-to-record data by non-experimented personnel (i.e., image acquisition). The enhanced capability of AI can substitute the need for expensive and time-consuming analysis to generate the same conclusion.
ISSN:2304-8158