Source Design of Vertical III–V Nanowire Tunnel Field-Effect Transistors

We systematically fabricate devices and analyze data for vertical InAs/(In)GaAsSb nanowire tunnel field-effect transistors (TFETs), to study the influence of source dopant position and level on their device performance. The results show that delaying the introduction of dopants further in the GaAsSb...

Full description

Saved in:
Bibliographic Details
Main Authors: Gautham Rangasamy, Zhongyunshen Zhu, Lars-Erik Wernersson
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10409158/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841526363806236672
author Gautham Rangasamy
Zhongyunshen Zhu
Lars-Erik Wernersson
author_facet Gautham Rangasamy
Zhongyunshen Zhu
Lars-Erik Wernersson
author_sort Gautham Rangasamy
collection DOAJ
description We systematically fabricate devices and analyze data for vertical InAs/(In)GaAsSb nanowire tunnel field-effect transistors (TFETs), to study the influence of source dopant position and level on their device performance. The results show that delaying the introduction of dopants further in the GaAsSb source segments improved the transistor metrics (subthreshold swing (SS) and the on-current performance), due to the formation of a nid-InAsSb segment. The devices display a minimum SS of 26 mV/dec and on-current of <inline-formula> <tex-math notation="LaTeX">$10.2 ~\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">$V_{\text {DS}}$ </tex-math></inline-formula> of 300 mV. The performance of devices were improved further by optimizing the doping levels which led to record subthermal current of <inline-formula> <tex-math notation="LaTeX">$1.2 ~\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> and transconductance of <inline-formula> <tex-math notation="LaTeX">$205 ~\mu \text{S}/\mu \text{m}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">$V_{\text {DS}}$ </tex-math></inline-formula> of 500 mV.
format Article
id doaj-art-a408c070e7b04b6c926ef356cd5dd6b0
institution Kabale University
issn 2329-9231
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
spelling doaj-art-a408c070e7b04b6c926ef356cd5dd6b02025-01-17T00:00:31ZengIEEEIEEE Journal on Exploratory Solid-State Computational Devices and Circuits2329-92312024-01-011081210.1109/JXCDC.2024.335594910409158Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect TransistorsGautham Rangasamy0https://orcid.org/0000-0003-0074-3210Zhongyunshen Zhu1https://orcid.org/0000-0002-7588-4088Lars-Erik Wernersson2https://orcid.org/0000-0002-1039-5849Department of Electrical and Information Technology, Lund University, Lund, SwedenDepartment of Electrical and Information Technology, Lund University, Lund, SwedenDepartment of Electrical and Information Technology, Lund University, Lund, SwedenWe systematically fabricate devices and analyze data for vertical InAs/(In)GaAsSb nanowire tunnel field-effect transistors (TFETs), to study the influence of source dopant position and level on their device performance. The results show that delaying the introduction of dopants further in the GaAsSb source segments improved the transistor metrics (subthreshold swing (SS) and the on-current performance), due to the formation of a nid-InAsSb segment. The devices display a minimum SS of 26 mV/dec and on-current of <inline-formula> <tex-math notation="LaTeX">$10.2 ~\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">$V_{\text {DS}}$ </tex-math></inline-formula> of 300 mV. The performance of devices were improved further by optimizing the doping levels which led to record subthermal current of <inline-formula> <tex-math notation="LaTeX">$1.2 ~\mu \text{A}/\mu \text{m}$ </tex-math></inline-formula> and transconductance of <inline-formula> <tex-math notation="LaTeX">$205 ~\mu \text{S}/\mu \text{m}$ </tex-math></inline-formula> at <inline-formula> <tex-math notation="LaTeX">$V_{\text {DS}}$ </tex-math></inline-formula> of 500 mV.https://ieeexplore.ieee.org/document/10409158/III-Vsource engineeringsteep-slopetunnel field-effect transistors (TFETs)vertical nanowires
spellingShingle Gautham Rangasamy
Zhongyunshen Zhu
Lars-Erik Wernersson
Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
IEEE Journal on Exploratory Solid-State Computational Devices and Circuits
III-V
source engineering
steep-slope
tunnel field-effect transistors (TFETs)
vertical nanowires
title Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
title_full Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
title_fullStr Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
title_full_unstemmed Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
title_short Source Design of Vertical III&#x2013;V Nanowire Tunnel Field-Effect Transistors
title_sort source design of vertical iii x2013 v nanowire tunnel field effect transistors
topic III-V
source engineering
steep-slope
tunnel field-effect transistors (TFETs)
vertical nanowires
url https://ieeexplore.ieee.org/document/10409158/
work_keys_str_mv AT gauthamrangasamy sourcedesignofverticaliiix2013vnanowiretunnelfieldeffecttransistors
AT zhongyunshenzhu sourcedesignofverticaliiix2013vnanowiretunnelfieldeffecttransistors
AT larserikwernersson sourcedesignofverticaliiix2013vnanowiretunnelfieldeffecttransistors