基于改进Kriging模型的主动学习可靠性分析方法

Active learning Kriging( ALK) model is able to only approximate the performance function in a narrow region around the limit state surface.Therefore,the efficiency of reliability analysis is remarkably improved.However,most of the existing strategies build the ALK model based on a so-called DACE too...

Full description

Saved in:
Bibliographic Details
Main Authors: 陈哲, 杨旭锋, 程鑫
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Strength 2021-01-01
Series:Jixie qiangdu
Online Access:http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.019
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841535879998341120
author 陈哲
杨旭锋
程鑫
author_facet 陈哲
杨旭锋
程鑫
author_sort 陈哲
collection DOAJ
description Active learning Kriging( ALK) model is able to only approximate the performance function in a narrow region around the limit state surface.Therefore,the efficiency of reliability analysis is remarkably improved.However,most of the existing strategies build the ALK model based on a so-called DACE toolbox.DACE cannot obtain the global optimal parameter of a Kriging model and the training point chosen in each iteration cannot be the optimal one.In this paper,one famous global optimization,i.e.,the differential evolution algorithm is introduced to explore the optimal parameter of Kriging model and improve the accuracy of Kriging prediction information.As a result,the training point in each iteration is guaranteed to be the global optimal one and the efficiency of ALK model is largely improved.
format Article
id doaj-art-a3e12e08581f4596a2e37b7cd895127d
institution Kabale University
issn 1001-9669
language zho
publishDate 2021-01-01
publisher Editorial Office of Journal of Mechanical Strength
record_format Article
series Jixie qiangdu
spelling doaj-art-a3e12e08581f4596a2e37b7cd895127d2025-01-15T02:26:36ZzhoEditorial Office of Journal of Mechanical StrengthJixie qiangdu1001-96692021-01-0112913630609878基于改进Kriging模型的主动学习可靠性分析方法陈哲杨旭锋程鑫Active learning Kriging( ALK) model is able to only approximate the performance function in a narrow region around the limit state surface.Therefore,the efficiency of reliability analysis is remarkably improved.However,most of the existing strategies build the ALK model based on a so-called DACE toolbox.DACE cannot obtain the global optimal parameter of a Kriging model and the training point chosen in each iteration cannot be the optimal one.In this paper,one famous global optimization,i.e.,the differential evolution algorithm is introduced to explore the optimal parameter of Kriging model and improve the accuracy of Kriging prediction information.As a result,the training point in each iteration is guaranteed to be the global optimal one and the efficiency of ALK model is largely improved.http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.019
spellingShingle 陈哲
杨旭锋
程鑫
基于改进Kriging模型的主动学习可靠性分析方法
Jixie qiangdu
title 基于改进Kriging模型的主动学习可靠性分析方法
title_full 基于改进Kriging模型的主动学习可靠性分析方法
title_fullStr 基于改进Kriging模型的主动学习可靠性分析方法
title_full_unstemmed 基于改进Kriging模型的主动学习可靠性分析方法
title_short 基于改进Kriging模型的主动学习可靠性分析方法
title_sort 基于改进kriging模型的主动学习可靠性分析方法
url http://www.jxqd.net.cn/thesisDetails#10.16579/j.issn.1001.9669.2021.01.019
work_keys_str_mv AT chénzhé jīyúgǎijìnkrigingmóxíngdezhǔdòngxuéxíkěkàoxìngfēnxīfāngfǎ
AT yángxùfēng jīyúgǎijìnkrigingmóxíngdezhǔdòngxuéxíkěkàoxìngfēnxīfāngfǎ
AT chéngxīn jīyúgǎijìnkrigingmóxíngdezhǔdòngxuéxíkěkàoxìngfēnxīfāngfǎ