Exploring the properties of the zero-divisor graph of direct product of $\ast$-rings
In this paper, we delve into the study of zero-divisor graphs in rings equipped with an involution. Specifically, we focus on abelian Rickart $\ast$-rings. Our investigation revolves around characterizing the diameter of a zero-divisor graph in the context of the direct product $\mathcal{S}_1 \oplus...
Saved in:
Main Authors: | Mohd Nazim, Nadeem Ur Rehman, Shabir Ahmad Mir |
---|---|
Format: | Article |
Language: | English |
Published: |
Shahid Bahonar University of Kerman
2024-12-01
|
Series: | Journal of Mahani Mathematical Research |
Subjects: | |
Online Access: | https://jmmrc.uk.ac.ir/article_4503_89ef51575abaf37aa1fef1f1b14f4b54.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Noncommutativity and noncentral zero divisors
by: Howard E. Bell, et al.
Published: (1999-01-01) -
On the Normalized Laplacian Spectrum of the Zero-Divisor Graph of the Commutative Ring <inline-formula><math display="inline"><semantics><msub><mstyle mathvariant="bold"><mi mathvariant="double-struck">Z</mi></mstyle><mrow><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">1</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">1</mn></msub></msubsup><msubsup><mi mathvariant="bold-italic">p</mi><mn mathvariant="bold">2</mn><msub><mi mathvariant="bold-italic">T</mi><mn mathvariant="bold">2</mn></msub></msubsup></mrow></msub></semantics></math></inline-formula>
by: Ali Al Khabyah, et al.
Published: (2025-01-01) -
On commutativity of one-sided s-unital rings
by: H. A. S. Abujabal, et al.
Published: (1992-01-01) -
On metric dimension and crosscap analysis of sum-annihilating essential ideal graph of commutative rings
by: Nadeem ur Rehman, et al.
Published: (2025-12-01) -
SMARANDACHE ANTI ZERO DIVISORS
by: Rebin M. Hassan, et al.
Published: (2025-01-01)