A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction

Nonconvex optimization has shown that it needs substantially fewer measurements than l1 minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with diction...

Full description

Saved in:
Bibliographic Details
Main Authors: Qiegen Liu, Xi Peng, Jianbo Liu, Dingcheng Yang, Dong Liang
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:International Journal of Biomedical Imaging
Online Access:http://dx.doi.org/10.1155/2014/128596
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nonconvex optimization has shown that it needs substantially fewer measurements than l1 minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with dictionary updating (WTBMDU) are proposed for solving lp optimization under the dictionary learning model and subjecting the fidelity to the partial measurements. By incorporating the iteratively reweighted norm into the two-level Bregman iteration method with dictionary updating scheme (TBMDU), the modified alternating direction method (ADM) solves the model of pursuing the approximated lp-norm penalty efficiently. Specifically, the algorithms converge after a relatively small number of iterations, under the formulation of iteratively reweighted l1 and l2 minimization. Experimental results on MR image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed method can efficiently reconstruct MR images from highly undersampled k-space data and presents advantages over the current state-of-the-art reconstruction approaches, in terms of higher PSNR and lower HFEN values.
ISSN:1687-4188
1687-4196