Comparative Analysis of Internal Porosity in AM Ti64 Using X-Ray Computed Tomography and Mechanical Polishing Serial Sectioning

X-ray computed tomography (XCT) is a widely adopted nondestructive technique for characterizing internal porosity in additive manufactured (AM) components. However, the accuracy and precision of porosity characterization using XCT can be affected by factors, such as XCT system configuration and post...

Full description

Saved in:
Bibliographic Details
Main Authors: Bryce Jolley, Christine Knott, Daniel Sparkman, Michael Uchic
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of Instrumentation and Measurement
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10713292/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:X-ray computed tomography (XCT) is a widely adopted nondestructive technique for characterizing internal porosity in additive manufactured (AM) components. However, the accuracy and precision of porosity characterization using XCT can be affected by factors, such as XCT system configuration and post-processing methodologies. This study investigates the influence of these variables on porosity characterization by comparing results obtained from four different XCT systems and two distinct analysis workflows applied to a single metallic AM sample. A benchmark is also established for the XCT performance by using a high-resolution reference dataset generated through mechanical polishing serial sectioning (MPSS). Porosity metrics, including volume fraction, pore count, size distribution, and equivalent spherical diameter (ESD), were computed for large pores (<inline-formula> <tex-math notation="LaTeX">$\ge 84~\mu $ </tex-math></inline-formula>m) within the XCT and MPSS datasets. By comparing these metrics across XCT systems and workflows, this research aims to demonstrate the variability introduced by different XCT configurations and analysis procedures, providing insights into the potential limitations and uncertainty considerations needed while carrying out XCT-based porosity characterization of AM components.
ISSN:2768-7236