Development and testing of a dual-frequency real-time hardware feedback system for the hard X-ray nanoprobe beamline of the SSRF
A novel dual-frequency real-time feedback system has been developed to simultaneously optimize and stabilize beam position and energy at the hard X-ray nanoprobe beamline of the Shanghai Synchrotron Radiation Facility. A user-selected cut-off frequency is used to separate the beam position signal ob...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
International Union of Crystallography
2025-01-01
|
Series: | Journal of Synchrotron Radiation |
Subjects: | |
Online Access: | https://journals.iucr.org/paper?S1600577524010208 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A novel dual-frequency real-time feedback system has been developed to simultaneously optimize and stabilize beam position and energy at the hard X-ray nanoprobe beamline of the Shanghai Synchrotron Radiation Facility. A user-selected cut-off frequency is used to separate the beam position signal obtained from an X-ray beam position monitor into two parts, i.e. high-frequency and low-frequency components. They can be real-time corrected and optimized by two different optical components, one chromatic and the other achromatic, of very different inertial mass, such as Bragg monochromator dispersive elements and a pre-focusing total external reflection mirror. The experimental results shown in this article demonstrate a significant improvement in position and energy stabilities. The long-term beam angular stability clearly improved from 2.21 to 0.92 µrad RMS in the horizontal direction and from 0.72 to 0.10 µrad RMS in the vertical direction. |
---|---|
ISSN: | 1600-5775 |