Analysis of Ionospheric Disturbances in China During the December 2023 Geomagnetic Storm Using Multi-Instrument Data
This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N<sub>2</sub>] r...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Remote Sensing |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-4292/17/9/1629 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This study investigates the ionospheric response over China during the geomagnetic storm that occurred on 1–2 December 2023. The data used include GPS measurements from the Crustal Movement Observation Network of China, BDS-GEO satellite data from IGS MEGX stations, [O]/[N<sub>2</sub>] ratio information obtained by the TIMED/GUVI, and electron density (Ne) observations from Swarm satellites. The Prophet time series forecasting model is employed to detect ionospheric anomalies. VTEC variations reveal significant daytime increases in GNSS stations such as GAMG, URUM, and CMUM after the onset of the geomagnetic storm on 1 December, indicating a dayside positive ionospheric response primarily driven by prompt penetration electric fields (PPEF). In contrast, the stations JFNG and CKSV show negative responses, reflecting regional differences. The [O]/[N<sub>2</sub>] ratio increased significantly in the southern region between 25°N and 40°N, suggesting that atmospheric gravity waves (AGWs) induced thermospheric compositional changes, which played a crucial role in the ionospheric disturbances. Ne observations from Swarm A and C satellites further confirmed that the intense ionospheric perturbations were consistent with changes in VTEC and [O]/[N<sub>2</sub>], indicating the medium-scale traveling ionospheric disturbance was driven by atmospheric gravity waves. Precise point positioning (PPP) analysis reveals that ionospheric variations during the geomagnetic storm significantly impact GNSS positioning precision, with various effects across different stations. Station GAMG experienced disturbances in the U direction (vertical positioning error) at the onset of the storm but quickly stabilized; station JFNG showed significant fluctuations in the U direction around 13:00 UT; and station CKSV experienced similar fluctuations during the same period; station CMUM suffered minor disturbances in the U direction; while station URUM maintained relatively stable positioning throughout the storm, corresponding to steady VTEC variations. These findings demonstrate the substantial impact of ionospheric disturbances on GNSS positioning accuracy in southern and central China during the geomagnetic storm. This study reveals the complex and dynamic processes of ionospheric disturbances over China during the 1–2 December 2023 storm, highlighting the importance of ionospheric monitoring and high-precision positioning corrections during geomagnetic storms. The results provide scientific implications for improving GNSS positioning stability in mid- and low-latitude regions. |
|---|---|
| ISSN: | 2072-4292 |