Semantic Categories: Uncertainty and Similarity

This paper addresses understanding and categorizing language by using Markov categories to establish a mathematical framework for semantic concepts. This framework enables us to measure the semantic similarity between linguistic expressions within a given text. Furthermore, this approach enables the...

Full description

Saved in:
Bibliographic Details
Main Authors: Ares Fabregat-Hernández, Javier Palanca, Vicent Botti
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematical and Computational Applications
Subjects:
Online Access:https://www.mdpi.com/2297-8747/29/6/106
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846103805409624064
author Ares Fabregat-Hernández
Javier Palanca
Vicent Botti
author_facet Ares Fabregat-Hernández
Javier Palanca
Vicent Botti
author_sort Ares Fabregat-Hernández
collection DOAJ
description This paper addresses understanding and categorizing language by using Markov categories to establish a mathematical framework for semantic concepts. This framework enables us to measure the semantic similarity between linguistic expressions within a given text. Furthermore, this approach enables the measurement and control of uncertainty in language categorization and the creation of metrics for evaluating semantic similarity. We provide use cases to demonstrate how the proposed methods can be applied and computed, focusing on their interpretability and the universality of categorical constructions. This work contributes to the field by offering a novel perspective on semantic similarity and uncertainty metrics in language processing, generating criteria to automate their computation.
format Article
id doaj-art-a1d857318eb54c76bea1d568ade05f01
institution Kabale University
issn 1300-686X
2297-8747
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematical and Computational Applications
spelling doaj-art-a1d857318eb54c76bea1d568ade05f012024-12-27T14:38:26ZengMDPI AGMathematical and Computational Applications1300-686X2297-87472024-11-0129610610.3390/mca29060106Semantic Categories: Uncertainty and SimilarityAres Fabregat-Hernández0Javier Palanca1Vicent Botti2Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, SpainValencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, SpainValencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camí de Vera S/N, 46022 Valencia, SpainThis paper addresses understanding and categorizing language by using Markov categories to establish a mathematical framework for semantic concepts. This framework enables us to measure the semantic similarity between linguistic expressions within a given text. Furthermore, this approach enables the measurement and control of uncertainty in language categorization and the creation of metrics for evaluating semantic similarity. We provide use cases to demonstrate how the proposed methods can be applied and computed, focusing on their interpretability and the universality of categorical constructions. This work contributes to the field by offering a novel perspective on semantic similarity and uncertainty metrics in language processing, generating criteria to automate their computation.https://www.mdpi.com/2297-8747/29/6/106category theoryMarkov categoriesnatural language processingexplainable artificial intelligence
spellingShingle Ares Fabregat-Hernández
Javier Palanca
Vicent Botti
Semantic Categories: Uncertainty and Similarity
Mathematical and Computational Applications
category theory
Markov categories
natural language processing
explainable artificial intelligence
title Semantic Categories: Uncertainty and Similarity
title_full Semantic Categories: Uncertainty and Similarity
title_fullStr Semantic Categories: Uncertainty and Similarity
title_full_unstemmed Semantic Categories: Uncertainty and Similarity
title_short Semantic Categories: Uncertainty and Similarity
title_sort semantic categories uncertainty and similarity
topic category theory
Markov categories
natural language processing
explainable artificial intelligence
url https://www.mdpi.com/2297-8747/29/6/106
work_keys_str_mv AT aresfabregathernandez semanticcategoriesuncertaintyandsimilarity
AT javierpalanca semanticcategoriesuncertaintyandsimilarity
AT vicentbotti semanticcategoriesuncertaintyandsimilarity