Fraïssé limit via forcing

Suppose $\mathcal{L}$ is a finite relational language and $\mathcal{K}$ is a class of finite $\mathcal{L}$-structures closed under substructures and isomorphisms. It is called aFra\"{i}ss\'{e} class if it satisfies Joint Embedding Property (JEP) and Amalgamation Property (AP). A Fra\"...

Full description

Saved in:
Bibliographic Details
Main Author: Mohammad Golshani
Format: Article
Language:English
Published: Shahid Bahonar University of Kerman 2024-12-01
Series:Journal of Mahani Mathematical Research
Subjects:
Online Access:https://jmmrc.uk.ac.ir/article_4112_f817a30f4eb6c933680a5926059f0e3e.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841560204270895104
author Mohammad Golshani
author_facet Mohammad Golshani
author_sort Mohammad Golshani
collection DOAJ
description Suppose $\mathcal{L}$ is a finite relational language and $\mathcal{K}$ is a class of finite $\mathcal{L}$-structures closed under substructures and isomorphisms. It is called aFra\"{i}ss\'{e} class if it satisfies Joint Embedding Property (JEP) and Amalgamation Property (AP). A Fra\"{i}ss\'{e} limit, denoted $Flim(\mathcal{K})$, of aFra\"{i}ss\'{e} class $\mathcal{K}$ is the unique\footnote{The existence and uniqueness follows from Fra\"{i}ss\'{e}'s theorem, See \cite{hodges}.} countable ultrahomogeneous (every isomorphism of finitely-generated substructures extends to an automorphism of $Flim(\mathcal{K})$) structure into which every member of $\mathcal{K}$ embeds.Given a Fraïssé class K and an infinite cardinal κ, we define a forcing notion which adds a structure of size κ using elements of K, which extends the Fraïssé construction in the case κ=ω.
format Article
id doaj-art-a1c6fef620544d56bf588e3cb2ea3abd
institution Kabale University
issn 2251-7952
2645-4505
language English
publishDate 2024-12-01
publisher Shahid Bahonar University of Kerman
record_format Article
series Journal of Mahani Mathematical Research
spelling doaj-art-a1c6fef620544d56bf588e3cb2ea3abd2025-01-04T19:29:49ZengShahid Bahonar University of KermanJournal of Mahani Mathematical Research2251-79522645-45052024-12-01134212510.22103/jmmr.2024.22473.15354112Fraïssé limit via forcingMohammad Golshani0School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran-Iran.Suppose $\mathcal{L}$ is a finite relational language and $\mathcal{K}$ is a class of finite $\mathcal{L}$-structures closed under substructures and isomorphisms. It is called aFra\"{i}ss\'{e} class if it satisfies Joint Embedding Property (JEP) and Amalgamation Property (AP). A Fra\"{i}ss\'{e} limit, denoted $Flim(\mathcal{K})$, of aFra\"{i}ss\'{e} class $\mathcal{K}$ is the unique\footnote{The existence and uniqueness follows from Fra\"{i}ss\'{e}'s theorem, See \cite{hodges}.} countable ultrahomogeneous (every isomorphism of finitely-generated substructures extends to an automorphism of $Flim(\mathcal{K})$) structure into which every member of $\mathcal{K}$ embeds.Given a Fraïssé class K and an infinite cardinal κ, we define a forcing notion which adds a structure of size κ using elements of K, which extends the Fraïssé construction in the case κ=ω.https://jmmrc.uk.ac.ir/article_4112_f817a30f4eb6c933680a5926059f0e3e.pdffraisse limitfocinguncountable cardinals
spellingShingle Mohammad Golshani
Fraïssé limit via forcing
Journal of Mahani Mathematical Research
fraisse limit
focing
uncountable cardinals
title Fraïssé limit via forcing
title_full Fraïssé limit via forcing
title_fullStr Fraïssé limit via forcing
title_full_unstemmed Fraïssé limit via forcing
title_short Fraïssé limit via forcing
title_sort fraisse limit via forcing
topic fraisse limit
focing
uncountable cardinals
url https://jmmrc.uk.ac.ir/article_4112_f817a30f4eb6c933680a5926059f0e3e.pdf
work_keys_str_mv AT mohammadgolshani fraisselimitviaforcing