Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method

The torsional dynamics model of herringbone gear pair considering time-varying meshing stiffness, constant backlash, dynamic backlash, static transmission error and external dynamic excitation is established. The frequency response characteristics of the system under constant and dynamic backlashes...

Full description

Saved in:
Bibliographic Details
Main Authors: Libang Wang, Hao Dong
Format: Article
Language:zho
Published: Editorial Office of Journal of Mechanical Transmission 2021-08-01
Series:Jixie chuandong
Subjects:
Online Access:http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2021.08.003
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841547290589790208
author Libang Wang
Hao Dong
author_facet Libang Wang
Hao Dong
author_sort Libang Wang
collection DOAJ
description The torsional dynamics model of herringbone gear pair considering time-varying meshing stiffness, constant backlash, dynamic backlash, static transmission error and external dynamic excitation is established. The frequency response characteristics of the system under constant and dynamic backlashes are solved by incremental harmonic balance method, and the results are further verified by Runge-Kutta numerical integration method. The influence of time-varying meshing stiffness, damping, static transmission error and external load excitation on the amplitude frequency characteristics of the system is analyzed. The results show that, there is not only main harmonic response, but also super-harmonic response in the system. The time-varying meshing stiffness and static transmission error can stimulate the amplitude frequency response of the system, while the damping can restrain the amplitude frequency response of the system. Changing the external load excitation has little effect on the amplitude frequency response state change of the system. Compared with the constant backlash, increasing the dynamic backlash amplitude can further control the nonlinear vibration of the gear system.
format Article
id doaj-art-a17adcf646644cb89b290b358b023a76
institution Kabale University
issn 1004-2539
language zho
publishDate 2021-08-01
publisher Editorial Office of Journal of Mechanical Transmission
record_format Article
series Jixie chuandong
spelling doaj-art-a17adcf646644cb89b290b358b023a762025-01-10T14:48:12ZzhoEditorial Office of Journal of Mechanical TransmissionJixie chuandong1004-25392021-08-0145182818846828Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance MethodLibang WangHao DongThe torsional dynamics model of herringbone gear pair considering time-varying meshing stiffness, constant backlash, dynamic backlash, static transmission error and external dynamic excitation is established. The frequency response characteristics of the system under constant and dynamic backlashes are solved by incremental harmonic balance method, and the results are further verified by Runge-Kutta numerical integration method. The influence of time-varying meshing stiffness, damping, static transmission error and external load excitation on the amplitude frequency characteristics of the system is analyzed. The results show that, there is not only main harmonic response, but also super-harmonic response in the system. The time-varying meshing stiffness and static transmission error can stimulate the amplitude frequency response of the system, while the damping can restrain the amplitude frequency response of the system. Changing the external load excitation has little effect on the amplitude frequency response state change of the system. Compared with the constant backlash, increasing the dynamic backlash amplitude can further control the nonlinear vibration of the gear system.http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2021.08.003Herringbone gearBacklashIncremental harmonic balance methodNonlinearFrequency response characteristic
spellingShingle Libang Wang
Hao Dong
Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
Jixie chuandong
Herringbone gear
Backlash
Incremental harmonic balance method
Nonlinear
Frequency response characteristic
title Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
title_full Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
title_fullStr Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
title_full_unstemmed Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
title_short Nonlinear Frequency Response Analysis of Herringbone Gear Pair based on Incremental Harmonic Balance Method
title_sort nonlinear frequency response analysis of herringbone gear pair based on incremental harmonic balance method
topic Herringbone gear
Backlash
Incremental harmonic balance method
Nonlinear
Frequency response characteristic
url http://www.jxcd.net.cn/thesisDetails#10.16578/j.issn.1004.2539.2021.08.003
work_keys_str_mv AT libangwang nonlinearfrequencyresponseanalysisofherringbonegearpairbasedonincrementalharmonicbalancemethod
AT haodong nonlinearfrequencyresponseanalysisofherringbonegearpairbasedonincrementalharmonicbalancemethod