Kinetic effects of thermal ions on internal kink modes in tokamak plasmas
Linear growth of internal kink mode is investigated using a kinetic-MHD hybrid simulation model under realistic tokamak conditions. By comparing purely fluid (single-fluid MHD) simulations with kinetic thermal ion simulations using various coupling schemes, it is demonstrated that thermal-ion effect...
Saved in:
| Main Authors: | , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2025-01-01
|
| Series: | Nuclear Fusion |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/1741-4326/adf238 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Linear growth of internal kink mode is investigated using a kinetic-MHD hybrid simulation model under realistic tokamak conditions. By comparing purely fluid (single-fluid MHD) simulations with kinetic thermal ion simulations using various coupling schemes, it is demonstrated that thermal-ion effects—including finite orbit width and ion pressure anisotropy—can significantly stabilize the internal kink mode. The maximum perturbation of distribution function aligns with resonance regions and near the passing-trapped boundary, indicating outward transport and redistribution of thermal ions. The net positive energy transfer from the mode to thermal ions leads to a reduction in growth rate. These results underscore the importance of incorporating thermal ion kinetics when modeling internal kink instabilities in fusion plasmas. |
|---|---|
| ISSN: | 0029-5515 |