High-dimensional outlier detection based on deep belief network and linear one-class SVM

Aiming at the difficulties in high-dimensional outlier detection at present,an algorithm of high-dimensional outlier detection based on deep belief network and linear one-class SVM was proposed.The algorithm firstly used the deep belief network which had a good performance in the feature extraction...

Full description

Saved in:
Bibliographic Details
Main Authors: Haoqi LI, Na YING, Chunsheng GUO, Jinhua WANG
Format: Article
Language:zho
Published: Beijing Xintong Media Co., Ltd 2018-01-01
Series:Dianxin kexue
Subjects:
Online Access:http://www.telecomsci.com/zh/article/doi/10.11959/j.issn.1000-0801.2018006/
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aiming at the difficulties in high-dimensional outlier detection at present,an algorithm of high-dimensional outlier detection based on deep belief network and linear one-class SVM was proposed.The algorithm firstly used the deep belief network which had a good performance in the feature extraction to realize the dimensionality reduction of high-dimensional data,and then the outlier detection was achieved based on a one-class SVM with the linear kernel function.High-dimensional data sets in UCI machine learning repository were selected to experiment,result shows that the algorithm has obvious advantages in detection accuracy and computational complexity.Compared with the PCA-SVDD algorithm,the detection accuracy is improved by 4.65%.Compared with the automatic encoder algorithm,its training time and testing time decrease significantly.
ISSN:1000-0801