The Existence and Uniqueness of Nonlinear Elliptic Equations with General Growth in the Gradient
In this paper, we prove the existence and uniqueness results for a weak solution to a class of Dirichlet boundary value problems whose prototype is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/1/63 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, we prove the existence and uniqueness results for a weak solution to a class of Dirichlet boundary value problems whose prototype is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>β</mi><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mi>q</mi></msup><mo>+</mo><mi>f</mi><mo> </mo><mrow><mi mathvariant="normal">i</mi><mi mathvariant="normal">n</mi><mo> </mo><mo>Ω</mo></mrow><mspace width="0.166667em"></mspace><mo>,</mo><mo> </mo><mi>u</mi><mo>=</mo><mn>0</mn><mo> </mo><mrow><mi mathvariant="normal">o</mi><mi mathvariant="normal">n</mi><mo> </mo><mo>∂</mo><mo>Ω</mo></mrow><mspace width="0.166667em"></mspace><mo>,</mo><mspace width="4pt"></mspace></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Ω</mo></semantics></math></inline-formula> is a bounded open subset of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mrow><mi mathvariant="double-struck">R</mi></mrow><mi>N</mi></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>≥</mo><mn>2</mn></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>N</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>Δ</mo><mi>p</mi></msub><mi>u</mi><mo>=</mo><mi>div</mi><mfenced separators="" open="(" close=")"><msup><mrow><mo>|</mo><mo>∇</mo><mi>u</mi><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mo>∇</mo><mi>u</mi></mfenced></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mo>−</mo><mn>1</mn><mo><</mo><mi>q</mi><mo><</mo><mi>p</mi></mrow></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is a positive constant and <i>f</i> is a measurable function satisfying suitable summability conditions depending on <i>q</i> and a smallness condition. |
---|---|
ISSN: | 2227-7390 |