Insights into crack prevention and property improvement for additively manufactured ultra-high-strength steel structures with complex geometries
Hybrid wire-arc directed energy deposition (WDED), in which complex features are deposited onto a forged base, offers a cost-effective solution for manufacturing geometrically complex ultra-high-strength steel components, particularly for aerospace applications. However, cracking at the base forging...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-07-01
|
| Series: | Additive Manufacturing Letters |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2772369025000404 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Hybrid wire-arc directed energy deposition (WDED), in which complex features are deposited onto a forged base, offers a cost-effective solution for manufacturing geometrically complex ultra-high-strength steel components, particularly for aerospace applications. However, cracking at the base forging/build interface during post-build heat treatment limits its widespread application. This study investigates the underlying causes of interfacial cracking, highlighting microstructural inhomogeneity, elemental segregation and transformation stresses as likely key contributing factors. A modified three-step post-build heat treatment incorporating a normalisation step was developed to mitigate some of these issues. The optimised process successfully suppressed cracking by refining prior-austenite grains before the application of a conventional quenching step. This enhanced tensile performance beyond AMS6419K standards, supporting the industrial implementation of hybrid WDED in aerospace structures. |
|---|---|
| ISSN: | 2772-3690 |