All-Printed Microfluidic–Electrochemical Devices for Glucose Detection

Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic–electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowes...

Full description

Saved in:
Bibliographic Details
Main Authors: Zexi Wang, Zhiyi Zhang, Changqing Xu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/14/12/569
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic–electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device’s performance. It also shows that both device structure and enzyme doping level of the devices play an important role in ensuring the best performance of the devices under various testing conditions.
ISSN:2079-6374