Unsupervised deep learning of electrocardiograms enables scalable human disease profiling

Abstract The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across the human disease landscape can be detected using the ECG is unclear. We developed a deep learning denoising autoencoder and systematically evaluated associations between ECG encodings and ~1,...

Full description

Saved in:
Bibliographic Details
Main Authors: Sam F. Friedman, Shaan Khurshid, Rachael A. Venn, Xin Wang, Nate Diamant, Paolo Di Achille, Lu-Chen Weng, Seung Hoan Choi, Christopher Reeder, James P. Pirruccello, Pulkit Singh, Emily S. Lau, Anthony Philippakis, Christopher D. Anderson, Mahnaz Maddah, Puneet Batra, Patrick T. Ellinor, Jennifer E. Ho, Steven A. Lubitz
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:npj Digital Medicine
Online Access:https://doi.org/10.1038/s41746-024-01418-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1841544302484783104
author Sam F. Friedman
Shaan Khurshid
Rachael A. Venn
Xin Wang
Nate Diamant
Paolo Di Achille
Lu-Chen Weng
Seung Hoan Choi
Christopher Reeder
James P. Pirruccello
Pulkit Singh
Emily S. Lau
Anthony Philippakis
Christopher D. Anderson
Mahnaz Maddah
Puneet Batra
Patrick T. Ellinor
Jennifer E. Ho
Steven A. Lubitz
author_facet Sam F. Friedman
Shaan Khurshid
Rachael A. Venn
Xin Wang
Nate Diamant
Paolo Di Achille
Lu-Chen Weng
Seung Hoan Choi
Christopher Reeder
James P. Pirruccello
Pulkit Singh
Emily S. Lau
Anthony Philippakis
Christopher D. Anderson
Mahnaz Maddah
Puneet Batra
Patrick T. Ellinor
Jennifer E. Ho
Steven A. Lubitz
author_sort Sam F. Friedman
collection DOAJ
description Abstract The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across the human disease landscape can be detected using the ECG is unclear. We developed a deep learning denoising autoencoder and systematically evaluated associations between ECG encodings and ~1,600 Phecode-based diseases in three datasets separate from model development, and meta-analyzed the results. The latent space ECG model identified associations with 645 prevalent and 606 incident Phecodes. Associations were most enriched in the circulatory (n = 140, 82% of category-specific Phecodes), respiratory (n = 53, 62%) and endocrine/metabolic (n = 73, 45%) categories, with additional associations across the phenome. The strongest ECG association was with hypertension (p < 2.2×10-308). The ECG latent space model demonstrated more associations than models using standard ECG intervals, and offered favorable discrimination of prevalent disease compared to models comprising age, sex, and race. We further demonstrate how latent space models can be used to generate disease-specific ECG waveforms and facilitate individual disease profiling.
format Article
id doaj-art-a06932aedc4e4d5ab67fc4215739cd9c
institution Kabale University
issn 2398-6352
language English
publishDate 2025-01-01
publisher Nature Portfolio
record_format Article
series npj Digital Medicine
spelling doaj-art-a06932aedc4e4d5ab67fc4215739cd9c2025-01-12T12:40:57ZengNature Portfolionpj Digital Medicine2398-63522025-01-018111310.1038/s41746-024-01418-9Unsupervised deep learning of electrocardiograms enables scalable human disease profilingSam F. Friedman0Shaan Khurshid1Rachael A. Venn2Xin Wang3Nate Diamant4Paolo Di Achille5Lu-Chen Weng6Seung Hoan Choi7Christopher Reeder8James P. Pirruccello9Pulkit Singh10Emily S. Lau11Anthony Philippakis12Christopher D. Anderson13Mahnaz Maddah14Puneet Batra15Patrick T. Ellinor16Jennifer E. Ho17Steven A. Lubitz18Data Sciences Platform, The Broad Institute of MIT and HarvardCardiovascular Research Center, Massachusetts General HospitalCardiovascular Research Center, Massachusetts General HospitalCardiovascular Research Center, Massachusetts General HospitalData Sciences Platform, The Broad Institute of MIT and HarvardData Sciences Platform, The Broad Institute of MIT and HarvardCardiovascular Research Center, Massachusetts General HospitalCardiovascular Disease Initiative, The Broad Institute of MIT and HarvardData Sciences Platform, The Broad Institute of MIT and HarvardCardiovascular Disease Initiative, The Broad Institute of MIT and HarvardData Sciences Platform, The Broad Institute of MIT and HarvardCardiovascular Research Center, Massachusetts General HospitalGoogle VenturesDepartment of Neurology, Brigham and Women’s HospitalData Sciences Platform, The Broad Institute of MIT and HarvardData Sciences Platform, The Broad Institute of MIT and HarvardCardiovascular Research Center, Massachusetts General HospitalCardiovascular Disease Initiative, The Broad Institute of MIT and HarvardCardiovascular Research Center, Massachusetts General HospitalAbstract The 12-lead electrocardiogram (ECG) is inexpensive and widely available. Whether conditions across the human disease landscape can be detected using the ECG is unclear. We developed a deep learning denoising autoencoder and systematically evaluated associations between ECG encodings and ~1,600 Phecode-based diseases in three datasets separate from model development, and meta-analyzed the results. The latent space ECG model identified associations with 645 prevalent and 606 incident Phecodes. Associations were most enriched in the circulatory (n = 140, 82% of category-specific Phecodes), respiratory (n = 53, 62%) and endocrine/metabolic (n = 73, 45%) categories, with additional associations across the phenome. The strongest ECG association was with hypertension (p < 2.2×10-308). The ECG latent space model demonstrated more associations than models using standard ECG intervals, and offered favorable discrimination of prevalent disease compared to models comprising age, sex, and race. We further demonstrate how latent space models can be used to generate disease-specific ECG waveforms and facilitate individual disease profiling.https://doi.org/10.1038/s41746-024-01418-9
spellingShingle Sam F. Friedman
Shaan Khurshid
Rachael A. Venn
Xin Wang
Nate Diamant
Paolo Di Achille
Lu-Chen Weng
Seung Hoan Choi
Christopher Reeder
James P. Pirruccello
Pulkit Singh
Emily S. Lau
Anthony Philippakis
Christopher D. Anderson
Mahnaz Maddah
Puneet Batra
Patrick T. Ellinor
Jennifer E. Ho
Steven A. Lubitz
Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
npj Digital Medicine
title Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
title_full Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
title_fullStr Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
title_full_unstemmed Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
title_short Unsupervised deep learning of electrocardiograms enables scalable human disease profiling
title_sort unsupervised deep learning of electrocardiograms enables scalable human disease profiling
url https://doi.org/10.1038/s41746-024-01418-9
work_keys_str_mv AT samffriedman unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT shaankhurshid unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT rachaelavenn unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT xinwang unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT natediamant unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT paolodiachille unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT luchenweng unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT seunghoanchoi unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT christopherreeder unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT jamesppirruccello unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT pulkitsingh unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT emilyslau unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT anthonyphilippakis unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT christopherdanderson unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT mahnazmaddah unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT puneetbatra unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT patricktellinor unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT jennifereho unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling
AT stevenalubitz unsuperviseddeeplearningofelectrocardiogramsenablesscalablehumandiseaseprofiling