Computing Entropy for Long-Chain Alkanes Using Linear Regression: Application to Hydroisomerization

Entropies for alkane isomers longer than C<sub>10</sub> are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from...

Full description

Saved in:
Bibliographic Details
Main Authors: Shrinjay Sharma, Richard Baur, Marcello Rigutto, Erik Zuidema, Umang Agarwal, Sofia Calero, David Dubbeldam, Thijs J. H. Vlugt
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/26/12/1120
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Entropies for alkane isomers longer than C<sub>10</sub> are computed using our recently developed linear regression model for thermochemical properties which is based on second-order group contributions. The computed entropies show excellent agreement with experimental data and data from Scott’s tables which are obtained from a statistical mechanics-based correlation. Entropy production and heat input are calculated for the hydroisomerization of C<sub>7</sub> isomers in various zeolites (FAU-, ITQ-29-, BEA-, MEL-, MFI-, MTW-, and MRE-types) at 500 K at chemical equilibrium. Small variations in these properties are observed because of the differences in reaction equilibrium distributions for these zeolites. The effect of chain length on heat input and entropy production is also studied for the hydroisomerization of C<sub>7</sub>, C<sub>8</sub>, C<sub>10</sub>, and C<sub>14</sub> isomers in MTW-type zeolite at 500 K. For longer chains, both heat input and entropy production increase. Enthalpies and absolute entropies of C<sub>7</sub> hydroisomerization reaction products in MTW-type zeolite increase with higher temperatures. These findings highlight the accuracy of our linear regression model in computing entropies for alkanes and provide insight for designing and optimizing zeolite-catalyzed hydroisomerization processes.
ISSN:1099-4300