Sliding ferroelectric memories and synapses based on rhombohedral-stacked bilayer MoS2

Abstract Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sli...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiuzhen Li, Biao Qin, Yaxian Wang, Yue Xi, Zhiheng Huang, Mengze Zhao, Yalin Peng, Zitao Chen, Zitian Pan, Jundong Zhu, Chenyang Cui, Rong Yang, Wei Yang, Sheng Meng, Dongxia Shi, Xuedong Bai, Can Liu, Na Li, Jianshi Tang, Kaihui Liu, Luojun Du, Guangyu Zhang
Format: Article
Language:English
Published: Nature Portfolio 2024-12-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-55333-4
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Recent advances have uncovered an exotic sliding ferroelectric mechanism, which endows to design atomically thin ferroelectrics from non-ferroelectric parent monolayers. Although notable progress has been witnessed in understanding the fundamental properties, functional devices based on sliding ferroelectrics remain elusive. Here, we demonstrate the rewritable, non-volatile memories at room-temperature with a two-dimensional (2D) sliding ferroelectric semiconductor of rhombohedral-stacked bilayer MoS2. The 2D sliding ferroelectric memories (SFeMs) show superior performances with a large memory window of >8 V, a high conductance ratio of above 106, a long retention time of >10 years, and a programming endurance greater than 104 cycles. Remarkably, flexible SFeMs are achieved with state-of-the-art performances competitive to their rigid counterparts and maintain their performances post bending over 103 cycles. Furthermore, synapse-specific Hebbian forms of plasticity and image recognition with a high accuracy of 97.81% are demonstrated based on flexible SFeMs.
ISSN:2041-1723