The Computational Complexity of Subclasses of Semiperfect Rings

This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semipe...

Full description

Saved in:
Bibliographic Details
Main Author: Huishan Wu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3608
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846153088594870272
author Huishan Wu
author_facet Huishan Wu
author_sort Huishan Wu
collection DOAJ
description This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Finally, based on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula> definition of local rings, computable semiperfect rings can be described by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>3</mn><mn>0</mn></msubsup></semantics></math></inline-formula> formulas. As a corollary, we find that the index set of computable semiperfect rings can be both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings.
format Article
id doaj-art-9d0a4b6241db43c2a6f88ead30d1a1b3
institution Kabale University
issn 2227-7390
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-9d0a4b6241db43c2a6f88ead30d1a1b32024-11-26T18:12:01ZengMDPI AGMathematics2227-73902024-11-011222360810.3390/math12223608The Computational Complexity of Subclasses of Semiperfect RingsHuishan Wu0School of Information Science, Beijing Language and Culture University, 15 Xueyuan Road, Haidian District, Beijing 100083, ChinaThis paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Finally, based on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula> definition of local rings, computable semiperfect rings can be described by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>3</mn><mn>0</mn></msubsup></semantics></math></inline-formula> formulas. As a corollary, we find that the index set of computable semiperfect rings can be both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings.https://www.mdpi.com/2227-7390/12/22/3608computability theorycomputational complexitysemisimple ringlocal ringsemiperfect ring
spellingShingle Huishan Wu
The Computational Complexity of Subclasses of Semiperfect Rings
Mathematics
computability theory
computational complexity
semisimple ring
local ring
semiperfect ring
title The Computational Complexity of Subclasses of Semiperfect Rings
title_full The Computational Complexity of Subclasses of Semiperfect Rings
title_fullStr The Computational Complexity of Subclasses of Semiperfect Rings
title_full_unstemmed The Computational Complexity of Subclasses of Semiperfect Rings
title_short The Computational Complexity of Subclasses of Semiperfect Rings
title_sort computational complexity of subclasses of semiperfect rings
topic computability theory
computational complexity
semisimple ring
local ring
semiperfect ring
url https://www.mdpi.com/2227-7390/12/22/3608
work_keys_str_mv AT huishanwu thecomputationalcomplexityofsubclassesofsemiperfectrings
AT huishanwu computationalcomplexityofsubclassesofsemiperfectrings