The Computational Complexity of Subclasses of Semiperfect Rings

This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semipe...

Full description

Saved in:
Bibliographic Details
Main Author: Huishan Wu
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/22/3608
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper studies the computational complexity of subclasses of semiperfect rings from the perspective of computability theory. A ring is semiperfect if the identity can be expressed as a sum of mutually orthogonal local idempotents. Semisimple rings and local rings are typical subclasses of semiperfect rings that play important roles in noncommutative algebra. First, we define a ring to be semisimple if the left regular module can be decomposed as a finite direct sum of simple submodules and prove that the index set of computable semisimple rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Second, we define local rings by using equivalent properties of non-left invertible elements of rings and show that the index set of computable local rings is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings. Finally, based on the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula> definition of local rings, computable semiperfect rings can be described by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>3</mn><mn>0</mn></msubsup></semantics></math></inline-formula> formulas. As a corollary, we find that the index set of computable semiperfect rings can be both <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Σ</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi mathvariant="sans-serif">Π</mi><mn>2</mn><mn>0</mn></msubsup></semantics></math></inline-formula>-hard within the index set of computable rings.
ISSN:2227-7390