Effectiveness and Mechanisms of CdS/Porous g-C<sub>3</sub>N<sub>4</sub> Heterostructures for Adsorption and Photocatalytic Degradation of Tetracycline Hydrochloride Wastewater in Visible Light
In this study, CdS/porous g-C<sub>3</sub>N<sub>4</sub> heterostructures were successfully synthesized via in situ co-precipitation to efficiently degrade tetracycline hydrochloride (TCH) under visible light. The heterostructures, particularly at a 2:1 mass ratio of CdS to por...
Saved in:
| Main Authors: | , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2024-12-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/14/23/11372 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this study, CdS/porous g-C<sub>3</sub>N<sub>4</sub> heterostructures were successfully synthesized via in situ co-precipitation to efficiently degrade tetracycline hydrochloride (TCH) under visible light. The heterostructures, particularly at a 2:1 mass ratio of CdS to porous g-C<sub>3</sub>N<sub>4</sub>, demonstrated significant improvements in both adsorption and photocatalytic performance. The adsorption and degradation rates increased 4-fold and 9.64-fold, respectively, compared to pure porous g-C<sub>3</sub>N<sub>4</sub>, with optimal removal rates achieved at a catalyst dosage of 0.2 g/L. Detailed mechanistic studies revealed that photogenerated holes (h<sup>+</sup>) and superoxide radicals (·O<sub>2</sub><sup>−</sup>) were the primary active species driving the degradation process, while hydroxyl radicals (·OH) played a minimal role. The composite material also maintained over 70% degradation efficiency after five cycles, indicating excellent stability. This research presents a promising route for the photocatalytic treatment of wastewater containing persistent organic pollutants, offering practical insights into dosage optimization, reaction kinetics, and mechanistic pathways that enhance performance. |
|---|---|
| ISSN: | 2076-3417 |