Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines

Abstract Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computati...

Full description

Saved in:
Bibliographic Details
Main Authors: Kevin A. Kovalchik, David J. Hamelin, Peter Kubiniok, Benoîte Bourdin, Fatima Mostefai, Raphaël Poujol, Bastien Paré, Shawn M. Simpson, John Sidney, Éric Bonneil, Mathieu Courcelles, Sunil Kumar Saini, Mohammad Shahbazy, Saketh Kapoor, Vigneshwar Rajesh, Maya Weitzen, Jean-Christophe Grenier, Bayrem Gharsallaoui, Loïze Maréchal, Zhaoguan Wu, Christopher Savoie, Alessandro Sette, Pierre Thibault, Isabelle Sirois, Martin A. Smith, Hélène Decaluwe, Julie G. Hussin, Mathieu Lavallée-Adam, Etienne Caron
Format: Article
Language:English
Published: Nature Portfolio 2024-11-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-024-54734-9
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846147608953749504
author Kevin A. Kovalchik
David J. Hamelin
Peter Kubiniok
Benoîte Bourdin
Fatima Mostefai
Raphaël Poujol
Bastien Paré
Shawn M. Simpson
John Sidney
Éric Bonneil
Mathieu Courcelles
Sunil Kumar Saini
Mohammad Shahbazy
Saketh Kapoor
Vigneshwar Rajesh
Maya Weitzen
Jean-Christophe Grenier
Bayrem Gharsallaoui
Loïze Maréchal
Zhaoguan Wu
Christopher Savoie
Alessandro Sette
Pierre Thibault
Isabelle Sirois
Martin A. Smith
Hélène Decaluwe
Julie G. Hussin
Mathieu Lavallée-Adam
Etienne Caron
author_facet Kevin A. Kovalchik
David J. Hamelin
Peter Kubiniok
Benoîte Bourdin
Fatima Mostefai
Raphaël Poujol
Bastien Paré
Shawn M. Simpson
John Sidney
Éric Bonneil
Mathieu Courcelles
Sunil Kumar Saini
Mohammad Shahbazy
Saketh Kapoor
Vigneshwar Rajesh
Maya Weitzen
Jean-Christophe Grenier
Bayrem Gharsallaoui
Loïze Maréchal
Zhaoguan Wu
Christopher Savoie
Alessandro Sette
Pierre Thibault
Isabelle Sirois
Martin A. Smith
Hélène Decaluwe
Julie G. Hussin
Mathieu Lavallée-Adam
Etienne Caron
author_sort Kevin A. Kovalchik
collection DOAJ
description Abstract Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm—MHCvalidator—to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.
format Article
id doaj-art-9c66e9cf31c342f29664ca716c9b1d6c
institution Kabale University
issn 2041-1723
language English
publishDate 2024-11-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-9c66e9cf31c342f29664ca716c9b1d6c2024-12-01T12:36:22ZengNature PortfolioNature Communications2041-17232024-11-0115112210.1038/s41467-024-54734-9Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccinesKevin A. Kovalchik0David J. Hamelin1Peter Kubiniok2Benoîte Bourdin3Fatima Mostefai4Raphaël Poujol5Bastien Paré6Shawn M. Simpson7John Sidney8Éric Bonneil9Mathieu Courcelles10Sunil Kumar Saini11Mohammad Shahbazy12Saketh Kapoor13Vigneshwar Rajesh14Maya Weitzen15Jean-Christophe Grenier16Bayrem Gharsallaoui17Loïze Maréchal18Zhaoguan Wu19Christopher Savoie20Alessandro Sette21Pierre Thibault22Isabelle Sirois23Martin A. Smith24Hélène Decaluwe25Julie G. Hussin26Mathieu Lavallée-Adam27Etienne Caron28CHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalMontreal Heart Institute, Université de MontréalMontreal Heart Institute, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCenter for Infectious Disease and Vaccine Research, La Jolla Institute for ImmunologyInstitute of Research in Immunology and CancerInstitute of Research in Immunology and CancerDepartment of Health Technology, Section of Experimental and Translational Immunology, Technical University of DenmarkDepartment of Biochemistry and Molecular Biology and Infection and Immunity Program, Biomedicine Discovery Institute, Monash UniversityDepartment of Immunobiology, Yale School of MedicineDepartment of Immunobiology, Yale School of MedicineDepartment of Immunobiology, Yale School of MedicineMontreal Heart Institute, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCenter for Infectious Disease and Vaccine Research, La Jolla Institute for ImmunologyInstitute of Research in Immunology and CancerCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalCHU Sainte-Justine Research Center, Université de MontréalMontreal Heart Institute, Université de MontréalDepartment of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of OttawaCHU Sainte-Justine Research Center, Université de MontréalAbstract Next-generation T-cell-directed vaccines for COVID-19 focus on establishing lasting T-cell immunity against current and emerging SARS-CoV-2 variants. Precise identification of conserved T-cell epitopes is critical for designing effective vaccines. Here we introduce a comprehensive computational framework incorporating a machine learning algorithm—MHCvalidator—to enhance mass spectrometry-based immunopeptidomics sensitivity. MHCvalidator identifies unique T-cell epitopes presented by the B7 supertype, including an epitope from a + 1-frameshift in a truncated Spike antigen, supported by ribosome profiling. Analysis of 100,512 COVID-19 patient proteomes shows Spike antigen truncation in 0.85% of cases, revealing frameshifted viral antigens at the population level. Our EpiTrack pipeline tracks global mutations of MHCvalidator-identified CD8 + T-cell epitopes from the BNT162b4 vaccine. While most vaccine epitopes remain globally conserved, an immunodominant A*01-associated epitope mutates in Delta and Omicron variants. This work highlights SARS-CoV-2 antigenic features and emphasizes the importance of continuous adaptation in T-cell vaccine development.https://doi.org/10.1038/s41467-024-54734-9
spellingShingle Kevin A. Kovalchik
David J. Hamelin
Peter Kubiniok
Benoîte Bourdin
Fatima Mostefai
Raphaël Poujol
Bastien Paré
Shawn M. Simpson
John Sidney
Éric Bonneil
Mathieu Courcelles
Sunil Kumar Saini
Mohammad Shahbazy
Saketh Kapoor
Vigneshwar Rajesh
Maya Weitzen
Jean-Christophe Grenier
Bayrem Gharsallaoui
Loïze Maréchal
Zhaoguan Wu
Christopher Savoie
Alessandro Sette
Pierre Thibault
Isabelle Sirois
Martin A. Smith
Hélène Decaluwe
Julie G. Hussin
Mathieu Lavallée-Adam
Etienne Caron
Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
Nature Communications
title Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
title_full Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
title_fullStr Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
title_full_unstemmed Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
title_short Machine learning-enhanced immunopeptidomics applied to T-cell epitope discovery for COVID-19 vaccines
title_sort machine learning enhanced immunopeptidomics applied to t cell epitope discovery for covid 19 vaccines
url https://doi.org/10.1038/s41467-024-54734-9
work_keys_str_mv AT kevinakovalchik machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT davidjhamelin machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT peterkubiniok machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT benoitebourdin machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT fatimamostefai machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT raphaelpoujol machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT bastienpare machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT shawnmsimpson machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT johnsidney machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT ericbonneil machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT mathieucourcelles machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT sunilkumarsaini machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT mohammadshahbazy machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT sakethkapoor machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT vigneshwarrajesh machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT mayaweitzen machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT jeanchristophegrenier machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT bayremgharsallaoui machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT loizemarechal machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT zhaoguanwu machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT christophersavoie machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT alessandrosette machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT pierrethibault machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT isabellesirois machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT martinasmith machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT helenedecaluwe machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT julieghussin machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT mathieulavalleeadam machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines
AT etiennecaron machinelearningenhancedimmunopeptidomicsappliedtotcellepitopediscoveryforcovid19vaccines