Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process

This paper presents a plantwide control strategy for optimizing a pressure-swing azeotropic distillation process used in tetrahydrofuran dehydration. Leveraging Skogestad’s methodology, this strategy focused on two distillation columns: a low-pressure column for water recovery at 20 psia and a high-...

Full description

Saved in:
Bibliographic Details
Main Authors: Moises Ramos-Martinez, Gerardo Ortiz-Torres, Felipe D. J. Sorcia-Vázquez, Carlos Alberto Torres-Cantero, Manuela Calixto-Rodriguez, Mayra G. Mena-Enriquez, Jorge Salvador Valdez Martínez, Estela Sarmiento-Bustos, Alan Cruz Rojas, Jesse Y. Rumbo-Morales
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:ChemEngineering
Subjects:
Online Access:https://www.mdpi.com/2305-7084/8/6/127
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1846105367235264512
author Moises Ramos-Martinez
Gerardo Ortiz-Torres
Felipe D. J. Sorcia-Vázquez
Carlos Alberto Torres-Cantero
Manuela Calixto-Rodriguez
Mayra G. Mena-Enriquez
Jorge Salvador Valdez Martínez
Estela Sarmiento-Bustos
Alan Cruz Rojas
Jesse Y. Rumbo-Morales
author_facet Moises Ramos-Martinez
Gerardo Ortiz-Torres
Felipe D. J. Sorcia-Vázquez
Carlos Alberto Torres-Cantero
Manuela Calixto-Rodriguez
Mayra G. Mena-Enriquez
Jorge Salvador Valdez Martínez
Estela Sarmiento-Bustos
Alan Cruz Rojas
Jesse Y. Rumbo-Morales
author_sort Moises Ramos-Martinez
collection DOAJ
description This paper presents a plantwide control strategy for optimizing a pressure-swing azeotropic distillation process used in tetrahydrofuran dehydration. Leveraging Skogestad’s methodology, this strategy focused on two distillation columns: a low-pressure column for water recovery at 20 psia and a high-pressure column that achieved 0.99 molar fraction purity of tetrahydrofuran at 115 psia. This study identified critical control variables through plant analysis by implementing PI controllers in the regulatory control layer to stabilize flows and pressures. In the supervisory control layer, a PI controller combined with MIMO MPC effectively enhanced the product purity and reduced the energy consumption by 36%. Stable inlet and outlet flow conditions (100 lbmol/hr inlet, 29.59 lbmol/hr outlet) were maintained without compromising the equipment integrity. The operational ranges for the process included variations in the tetrahydrofuran mole fraction from 0.25 to 0.35 at the inlet, which demonstrated a robust performance across perturbations. These achievements signify significant advancements in process efficiency and sustainability, offering substantial reductions in energy usage while ensuring consistent high purity levels in tetrahydrofuran production. The developed control structure sets a new standard for efficient azeotropic distillation processes, with implications for enhancing operational performance across industrial applications.
format Article
id doaj-art-9c2b5cf35b6b41be8b60dcfbc5e566b7
institution Kabale University
issn 2305-7084
language English
publishDate 2024-12-01
publisher MDPI AG
record_format Article
series ChemEngineering
spelling doaj-art-9c2b5cf35b6b41be8b60dcfbc5e566b72024-12-27T14:16:56ZengMDPI AGChemEngineering2305-70842024-12-018612710.3390/chemengineering8060127Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation ProcessMoises Ramos-Martinez0Gerardo Ortiz-Torres1Felipe D. J. Sorcia-Vázquez2Carlos Alberto Torres-Cantero3Manuela Calixto-Rodriguez4Mayra G. Mena-Enriquez5Jorge Salvador Valdez Martínez6Estela Sarmiento-Bustos7Alan Cruz Rojas8Jesse Y. Rumbo-Morales9Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, MexicoDepartamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, MexicoDepartamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, MexicoTecnológico Nacional de Mexico Campus Colima, Av. Tecnológico # 1, Col. Liberación, Villa de Álvarez 28976, Colima, MexicoDivisión Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62765, Morelos, MexicoBiomedical Sciences Department, Universidad de Guadalajara, Tonalá 45425, Jalisco, MexicoDivisión Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62765, Morelos, MexicoDivisión Académica de Mecánica Industrial, Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, Col. Palo Escrito, Emiliano Zapata 62765, Morelos, MexicoDepartamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, MexicoDepartamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Ameca 46600, Jalisco, MexicoThis paper presents a plantwide control strategy for optimizing a pressure-swing azeotropic distillation process used in tetrahydrofuran dehydration. Leveraging Skogestad’s methodology, this strategy focused on two distillation columns: a low-pressure column for water recovery at 20 psia and a high-pressure column that achieved 0.99 molar fraction purity of tetrahydrofuran at 115 psia. This study identified critical control variables through plant analysis by implementing PI controllers in the regulatory control layer to stabilize flows and pressures. In the supervisory control layer, a PI controller combined with MIMO MPC effectively enhanced the product purity and reduced the energy consumption by 36%. Stable inlet and outlet flow conditions (100 lbmol/hr inlet, 29.59 lbmol/hr outlet) were maintained without compromising the equipment integrity. The operational ranges for the process included variations in the tetrahydrofuran mole fraction from 0.25 to 0.35 at the inlet, which demonstrated a robust performance across perturbations. These achievements signify significant advancements in process efficiency and sustainability, offering substantial reductions in energy usage while ensuring consistent high purity levels in tetrahydrofuran production. The developed control structure sets a new standard for efficient azeotropic distillation processes, with implications for enhancing operational performance across industrial applications.https://www.mdpi.com/2305-7084/8/6/127azeotropic processdistillation columnsdehydrate tetrahydrofuranplantwide control
spellingShingle Moises Ramos-Martinez
Gerardo Ortiz-Torres
Felipe D. J. Sorcia-Vázquez
Carlos Alberto Torres-Cantero
Manuela Calixto-Rodriguez
Mayra G. Mena-Enriquez
Jorge Salvador Valdez Martínez
Estela Sarmiento-Bustos
Alan Cruz Rojas
Jesse Y. Rumbo-Morales
Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
ChemEngineering
azeotropic process
distillation columns
dehydrate tetrahydrofuran
plantwide control
title Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
title_full Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
title_fullStr Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
title_full_unstemmed Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
title_short Plantwide Control for the Separation of THF-<i>H</i><sub>2</sub><i>O</i> in an Azeotropic Distillation Process
title_sort plantwide control for the separation of thf i h i sub 2 sub i o i in an azeotropic distillation process
topic azeotropic process
distillation columns
dehydrate tetrahydrofuran
plantwide control
url https://www.mdpi.com/2305-7084/8/6/127
work_keys_str_mv AT moisesramosmartinez plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT gerardoortiztorres plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT felipedjsorciavazquez plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT carlosalbertotorrescantero plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT manuelacalixtorodriguez plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT mayragmenaenriquez plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT jorgesalvadorvaldezmartinez plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT estelasarmientobustos plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT alancruzrojas plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess
AT jesseyrumbomorales plantwidecontrolfortheseparationofthfihisub2subioiinanazeotropicdistillationprocess