Improved stiff string torque and drag prediction using a computationally efficient contact algorithm

Due to the intermittent contact with the wellbore, determining torque and drag for deviated wells is difficult. Most models have ignored drill string stiffness and assumed continual contact to simplify derivation. However, the accuracy of these ‘soft-string’ models is restricted, especially at high...

Full description

Saved in:
Bibliographic Details
Main Authors: Sampath Liyanarachchi, Geoff Rideout
Format: Article
Language:English
Published: Taylor & Francis Group 2024-12-01
Series:Mathematical and Computer Modelling of Dynamical Systems
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/13873954.2024.2348152
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Due to the intermittent contact with the wellbore, determining torque and drag for deviated wells is difficult. Most models have ignored drill string stiffness and assumed continual contact to simplify derivation. However, the accuracy of these ‘soft-string’ models is restricted, especially at high dogleg severities. On the other hand, most ‘stiff-string’ models rely on computationally intensive approaches or continuous contact assumptions. To mitigate these issues, a computationally efficient penalty-based wellbore contact algorithm has been developed based on vector calculation, which at most requires two dot products and three arithmetic operations to determine contact locations. This algorithm is incorporated into a 3D multibody dynamics (MBD) model, which utilizes rigid drill-string segments based on the Newton-Euler formulation, connected via axial, shear, torsional, and bending springs to capture drill string flexibility. This model performs simulations faster than real-time and has been validated using surface measurements from a completed well.
ISSN:1387-3954
1744-5051