High-Fidelity Universal Gates in the ^{171}Yb Ground-State Nuclear-Spin Qubit

Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we d...

Full description

Saved in:
Bibliographic Details
Main Authors: J. A. Muniz, M. Stone, D. T. Stack, M. Jaffe, J. M. Kindem, L. Wadleigh, E. Zalys-Geller, X. Zhang, C.-A. Chen, M. A. Norcia, J. Epstein, E. Halperin, F. Hummel, T. Wilkason, M. Li, K. Barnes, P. Battaglino, T. C. Bohdanowicz, G. Booth, A. Brown, M. O. Brown, W. B. Cairncross, K. Cassella, R. Coxe, D. Crow, M. Feldkamp, C. Griger, A. Heinz, A. M. W. Jones, H. Kim, J. King, K. Kotru, J. Lauigan, J. Marjanovic, E. Megidish, M. Meredith, M. McDonald, R. Morshead, S. Narayanaswami, C. Nishiguchi, T. Paule, K. A. Pawlak, K. L. Pudenz, D. Rodríguez Pérez, A. Ryou, J. Simon, A. Smull, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro, T.-Y. Wu, X. Xie, B. J. Bloom
Format: Article
Language:English
Published: American Physical Society 2025-05-01
Series:PRX Quantum
Online Access:http://doi.org/10.1103/PRXQuantum.6.020334
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arrays of optically trapped neutral atoms are a promising architecture for the realization of quantum computers. In order to run increasingly complex algorithms, it is advantageous to demonstrate high-fidelity and flexible gates between long-lived and highly coherent qubit states. In this work, we demonstrate a universal high-fidelity gate set with individually controlled and parallel application of single-qubit gates and two-qubit gates operating on the ground-state nuclear-spin qubit in arrays of tweezer-trapped ^{171}Yb atoms. We utilize the long lifetime, flexible control, and high gate fidelity of our system to characterize native gates using single- and two-qubit Clifford and symmetric subspace randomized-benchmarking circuits with more than 200 controlled-Z (cz) gates applied to one or two pairs of atoms. We measure our two-qubit entangling gate fidelity to be 99.72(3)% (99.40(3)%) with (without) postselection. In addition, we introduce a simple and optimized method for calibration of multiparameter quantum gates. These results represent important milestones toward executing complex and general quantum computation with neutral atoms.
ISSN:2691-3399