On the Efficient Representation of an Unbounded Resource with the Aid of One-Counter Circuits
A class of infinite-state automata with a simple periodic behaviour and a convenient graphical representation is studied. A positive one-counter circuit is defined as a strongly connected one-counter net (one-counter nondeterministic finite automata without zero-testing) with at least one positive c...
Saved in:
| Main Author: | |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Yaroslavl State University
2013-04-01
|
| Series: | Моделирование и анализ информационных систем |
| Subjects: | |
| Online Access: | https://www.mais-journal.ru/jour/article/view/212 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A class of infinite-state automata with a simple periodic behaviour and a convenient graphical representation is studied. A positive one-counter circuit is defined as a strongly connected one-counter net (one-counter nondeterministic finite automata without zero-testing) with at least one positive cycle. It is shown that in a positive circuit an infinite part of a reachability set is an arithmetic progression; numerical properties of this progression are estimated. A specific graphical representation of circuits is presented. General one-counter nets are equivalent to Petri Nets with at most one unbounded place and to pushdown automata with a single-symbol stack alphabet. It is shown that an arbitrary one-counter net can be represented by a finite tree of circuits. A one-counter net is called sound, if a counter is used only for “infinite-state” (periodic) behaviour. It is shown that for an arbitrary one-counter net an equivalent sound net can be effectively constructed from the corresponding tree of circuits. |
|---|---|
| ISSN: | 1818-1015 2313-5417 |